首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
After more than six and half years in orbit, the ESA space observatory INTEGRAL has provided new, exciting results in the soft gamma-ray energy range (from a few keV to a few MeV). With the discovery of about 700 hard X-Ray sources, it has changed our previous view of a sky composed of peculiar and “monster” sources. The new high energy sky is in fact full of a large variety of normal, very energetic emitters, characterized by new accretion and acceleration processes (see also IBIS cat4 (Bird et al., 2010). At the same time, about one GRB/month is detected and imaged by the two main gamma-ray instruments on board: IBIS and SPI. In this paper, we review the major achievements of the INTEGRAL observatory in the field of Gamma-Ray Bursts. We summarize the global properties of Gamma-Ray Bursts detected by INTEGRAL, with respect to their duration, spectral index, and peak flux distributions. We recall INTEGRAL results on the spectral lag analysis, showing how long-lag GRBs appear to form a separate population at low peak fluxes. We review the outcome of polarisation studies performed by using INTEGRAL data. Finally, concerning single GRB studies, we highlight the properties of particularly interesting Gamma-Ray Bursts in the INTEGRAL sample.  相似文献   

2.
On March 2003, IBIS, the γ-ray imager on board the INTEGRAL satellite, detected an outburst from a new source, IGR J17464-3213, that turned out to be an HEAO-1 transient, namely H1743-322. The spectral and temporal evolutions of the source were observed by INTEGRAL in different periods. Also RXTE observed the source for the first time on 2003 March 29 during a PCA Galactic bulge scan. The source flux decayed below the RXTE PCA sensitivity limit in November 2003, then in April 2004 it was again detected by INTEGRAL. On July 3, 2004 the source was again detected by RXTE/PCA at a 2–10 keV intensity of 16 mCrab and on July 7, reached 69 mCrab. Recently, a new outburst was observed on August 2005. We briefly summarise here the behaviour of the source observed by INTEGRAL from March 2003 to August 2005. The new outbursts of the source and the analysis of all the data collected (now public) give a global view of the spectral and time behaviour of this X-ray transient.  相似文献   

3.
INTEGRAL is the ESA lead International Gamma-Ray Astrophysical Laboratory, successfully launched the 17th October 2002 from Baikonur with a Proton vehicle. In view of the high sensitivity of the two γ-ray instruments IBIS and SPI and their capability to provide at the same time image, spectra and time profiles of all the sources in their wide field of view, a key project was approved as “Core Programme” to obtain deep observations of the Galactic Centre (GCDE) and to exploit regular scan of the whole Galaxy Plane since the beginning of the mission. This paper will briefly review the main astrophysical results obtained in the field of high energy Galactic sources with the INTEGRAL/IBIS γ-ray Imager onboard INTEGRAL, and make a comparison with the previous scenario depicted by the BeppoSAX and RXTE results.  相似文献   

4.
A more appropriate title for this talk would have been “Measurements of Large Scale Structure from X-ray Background Fluctuations”. While it has long been recognized that the X-ray Background (XRB) is primarily of a cosmological origin (with z < a few), it has recently become apparent that surface brightness fluctuations in the surveys of the XRB can be used to trace the distribution of matter in much the same way as complete catalogs of individual objects. The distance which is probed is related to the angular resolution of the detector; for the HEAO-1 A2 experiment, which provides the best all-sky data base for the XRB in the 2–20 keV band, the effective depth is a few 100 Mpc.  相似文献   

5.
Hard X-ray and high frequency decimetric type III radio bursts have been observed in association with the soft X-raysolar flare (GOES class M 6.1) on 4 April 2002 (1532 UT). The flare apparently occurred 6 degrees behind the east limb of the Sun in the active region NOAA 9898. Hard X-ray spectra and images were obtained by the X-ray imager on RHESSI during the impulsive phase of the flare. The Brazilian Solar Spectroscope and Ondrejov Radio Telescopes recorded type III bursts in 800–1400 MHz range in association with the flare. The images of the 3–6, 6–12, 12–25, and 25–50 keV X-ray sources, obtained simultaneously by RHESSI during the early impulsive phase of the flare, show that all the four X-ray sources were essentially at the same location well above the limb of the Sun. During the early impulsive phase, the X-ray spectrum over 8–30 keV range was consistent with a power law with a negative exponent of 6. The radio spectra show drifting radio structures with emission in a relatively narrow (Δf ≤ 200 MHz) frequency range indicating injection of energetic electrons into a plasmoid which is slowly drifting upwards in the corona.  相似文献   

6.
We study the heliocentric evolution of ICME-like disturbances and their associated transient forward shocks (TFSs) propagating in the interplanetary (IP) medium comparing the solutions of a hydrodynamic (HD) and magnetohydrodynamic (MHD) models using the ZEUS-3D code [Stone, J.M., Norman, M.L., 1992. Zeus-2d: a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. i – the hydrodynamic algorithms and tests. Astrophysical Journal Supplement Series 80, 753–790]. The simulations show that when a fast ICME and its associated IP shock propagate in the inner heliosphere they have an initial phase of about quasi-constant propagation speed (small deceleration) followed, after a critical distance (deflection point), by an exponential deceleration. By combining white light coronograph and interplanetary scintillation (IPS) measurements of ICMEs propagating within 1 AU [Manoharan, P.K., 2005. Evolution of coronal mass ejections in the inner heliosphere: a study using white-light and scintillation images. Solar Physics 235 (1–2), 345–368], such a critical distance and deceleration has already been inferred observationally. In addition, we also address the interaction between two ICME-like disturbances: a fast ICME 2 overtaking a previously launched slower ICME 1. After interaction, the leading ICME 1 accelerates and the tracking ICME 2 decelerates and both ICMEs tend to arrive at 1 AU having similar speeds. The 2-D HD and MHD models show similar qualitative results for the evolution and interaction of these disturbances in the IP medium.  相似文献   

7.
The detailed study of the spectral evolution during the steep decay phase of early X-ray light curves of gamma-ray bursts (GRBs) is a very important task that can give us information on different emission components contributing to the prompt-to-afterglow transition and help to understand the link between these two stages. Time resolved spectral analysis of bright GRBs detected by Swift has shown that a good modeling of the early X-ray light curves can be obtained with Band or cut-off power-law broad band spectra with evolving parameters (e.g., decaying peak energy). We developed a procedure to simultaneously fit the temporal evolution of all the spectral parameters of a GRB during the prompt-to-afterglow transition based on the analysis of the Swift Burst Alert Telescope (BAT) and the Swift X-ray Telescope (XRT) count rate and hardness ratio light curves. The procedure has been tested on GRB 060614 and GRB 090618, two very peculiar bright GRB detected by Swift that show a long exponentially decaying tail with strong softening and peak energy crossing the XRT energy band.  相似文献   

8.
9.
We first briefly review the current trend in the studies of coronal mass ejections (CMEs), then summarize some recent efforts in understanding the CME initiation. Emphasis has been put on the studies of Earth-directed CMEs whose associated surface activity and large scale magnetic source have been well identified. The data analysis by combining the MDI full disc magnetograms, vector magnetograms of active regions, EUV waves and dimmings, non-thermal radio sources, and the SOHO LASCO observations has shed new light in understanding the CME magnetism. However, the current studies seem to invoke new observations in a few aspects: (1) The observations which enable us to trace CMEs from the earliest associated surface activity to its initial acceleration and key development in the low corona in the height of 1–3 R; (2) The imaging spectroscopic observations which can be used to diagnose the early plasma outflow and the line-of-sight velocity in understanding the kinematics of CMEs; (3) The accurate timing from primary magnetic energy release, manifested by chromospheric activity, non-thermal radio bursts, and EUV, X-ray and γ-ray emissions, to the CME initiation, early acceleration and propagation, and the consequences in the interplanetary space and magnetosphere. The Kuafu Mission will meet the basic requirement for the new observations in CME initiation studies and serve as a monitor of space weather of the Sun–Earth system.  相似文献   

10.
Short and long GRBs are thought to be two distinct classes based on their different duration and spectrum. Through the spectral analysis of two similarly selected samples of BATSE short and long GRBs, we show that short GRBs are harder than long events, confirming what found from the comparison of their hardness ratio. However, this spectral diversity seems to be due to a harder low energy spectral component of short GRBs, rather than a (slightly higher) peak energy. Interestingly short GRBs have a spectrum which is similar to the spectrum of the emission of the first 1–2 s of long events. We find evidence that short GRBs are inconsistent with the EpeakEiso correlation defined by long bursts while they follow the same EpeakLiso correlation of long GRBs. These results, coupled to the similar variability timescale of short events and the first seconds of long ones, suggest that a common (or similar) dissipation mechanism could operate in both classes. The difference in the duration would then be due mainly to the central engine lifetime.  相似文献   

11.
An empirical formula relating the strength of a storm given by its |Dst|max with the L-coordinate of the peak of storm-injected relativistic electrons is one of a few well-confirmed quantitative relations found in the magneto-spheric physics. We successively extended a dataset of the formula’s basic storms with several events of high Dst-amplitude up to the highest observed |Dst|max = 600 nT. Possible applying of the formula to the predicting of the ring-current plasma-pressure distribution and the lowest westward electrojet position for a storm are discussed. We have also analyzed the 2000–2001 years’ data on relativistic electrons from our instruments installed on EXPRESS-A (geosynchronous orbit; Ee = 0.8–6 MeV), Molniya-3 (h = 500 × 40 000 km, i = 63°; Ee = 0.8–5.5 MeV) and GLONASS (h = 20 000 km, i = 64°; Ee  l MeV) along with other correlated measurements: GOES series (Ee > 2 MeV), geomagnetic indices (Dst, AE, AL) and interplanetary parameters (solar wind, IMF). The goal is to investigate which outer conditions are most responsible for the high/low output of the storm-injected relativistic electrons. For the geosynchronous orbit, two factors are found as the necessary condition of the highest electron output: high and long-lasting substorm activity on a storm recovery phase and high velocity of solar wind. On the contrary, extremely low substorm activity surely observed during whole the storm recovery phase constitutes a sufficient condition of the non-increased after-storm electron intensity. For the first time found cases of the increased after-storm electron intensity observed at the inner L-shells with no simultaneously seen increase in the geosynchronous distances are presented.  相似文献   

12.
A so-called “ISF” prediction method for geomagnetic disturbances caused by solar wind storms blowing to the Earth is suggested. The method is based on a combined approach of solar activity, interplanetary scintillation (I) and geomagnetic disturbance observations during the period 1966–1982 together with the dynamics of solar wind storm propagation (S) and fuzzy mathematics (F). It has been used for prediction tests for 37 geomagnetic disturbance events during the descending solar activity phase 1984–1985, and was presented in 33rd COSPAR conference. Here, it has been improved by consideration of the three dimensional propagation characteristics of each event, the search for the best radio source and the influence of the southward components of interplanetary magnetic fields on the geomagnetic disturbances. It is used for prediction tests for 24 larger geomagnetic disturbance events that produced space anomalies during the period 1980–1999. The main results are: (1) for the onset time of the geomagnetic disturbance, the relative error between the observation, Tobs, and the prediction, Tpred, ΔTpred/Tobs  10% for 45.8% of all events, 30% for 78.3% and >30% for only 21.7%; (2) for the magnetic disturbance magnitude, the relative error between the observation, ∑Kp,obs, and the prediction, ∑Kp,pred, Δ∑Kp,pred/∑Kp,obs  10% for 41.6% of all events, 30% for 79% and 45% for 100%. This shows that the prediction method described here has encouraging prospects for improving predictions of large geomagnetic disturbances in space weather events.  相似文献   

13.
After more than two years of successful in-orbit operations, the γ-ray coded aperture SIGMA telescope has accumulated 800 hours of live-time observations of the Galactic Center region, including the remarkable hard source identified with the X-ray source 1E 1740.7–2942. The long-term behavior of the soft γ-ray emission of 1E 1740.7–2942, as determined from the SIGMA survey, supplemented with previously available soft γ-ray data, leads to its identification with a singular radio source, which consists of a double sided radio jet emanating from a compact variable core whose variability is correlated with that of the soft γ-ray source. The compact radio core, which lies well inside the improved soft γ-ray (40–150 keV) error circle (27″ radius) derived from the high-resolution SIGMA survey, is also inside the ROSAT and TTM error circle derived respectively in the soft and hard X-ray bands.  相似文献   

14.
We present measurements and data analysis of the carbon stable isotopes (δ13C) in the planktonic Globigerinoides ruber extracted from the GT90/3 shallow water Ionian sea core, dated with high precision. It is commonly accepted that δ13C variations in symbiontic foraminifera mainly record the effects of productivity and of photosynthetic activity, varying with the ambient light level. Therefore from this time series we can deduce information on the sea surface illumination at the time of the planktonic foraminifera growth. The profile (359 points) covers the period 590–1979 AD, with a resolution of 3.87 years and it is an extension of the time series (215 points) previously published in this journal. The spectral analysis of the longer time series confirms the presence of the 11 y signal, with amplitude 0.08‰ (peak-to-trough), found in the shorter time series in phase with the sunspot solar cycle; furthermore it shows the presence of two centennial cycles of 100 and 200 years, with amplitude 0.08‰ and 0.02‰ respectively. These components are identified at high significance level by Monte Carlo singular spectrum analysis (MC-SSA). A comparison between the δ13C profile and the historical aurorae series (600–1500 AD) shows that the long-term δ13C variations are at least partially generated by the solar activity modulation and in phase with the solar output, as represented by the solar wind interaction with the magnetosphere.  相似文献   

15.
The Scanning Sky Monitor (SSM) on ASTROSAT is a position-sensitive gas-filled proportional counter with a wide field of view. The scientific objective of SSM is to scan the sky within few hours to detect and locate transient X-ray sources in the outburst phase. Once detected, this information will be provided for studies in all energy bands. The energy range of operation of SSM is 2–10 keV. The optimisation of the parameters of the proportional counter such as the cell size, the gas mixture and the gas pressure for the SSM are discussed here.  相似文献   

16.
SMESE: A SMall Explorer for Solar Eruptions   总被引:1,自引:0,他引:1  
The SMall Explorer for Solar Eruptions (SMESE) mission is a microsatellite proposed by France and China. The payload of SMESE consists of three packages: LYOT (a Lyman imager and a Lyman coronagraph), DESIR (an Infra-Red Telescope working at 35–80 and 100–250 μm), and HEBS (a High-Energy Burst Spectrometer working in X- and γ-rays).

The status of research on flares and coronal mass ejections is briefly reviewed in the context of on-going missions such as SOHO, TRACE and RHESSI. The scientific objectives and the profile of the mission are described. With a launch around 2012–2013, SMESE will provide a unique tool for detecting and understanding eruptions (flares and coronal mass ejections) close to the maximum phase of activity.  相似文献   


17.
A new method of nonlinear spectral analysis (called the method of global minimum: MGM), based on the best presentation (in sense of minimal squares) of a given time data set as a sum of sinusoids whose frequencies, amplitudes and phases are to be determined, has been used to find periodicities in annual Wolf sunspot numbers (W) during the period 1700–1995. The possible future behaviour of the 11-year solar cycle (based on an extrapolation of the calculated model) is also presented. The main characteristics of the 23rd solar cycle are as follows: the W maximum occurs about 2004, with a peak of nearly 220. An unusually large value of W will occur during the 23rd cycle, which should be characterised by the longest maximum, specifically, W will be greater than 100 during the 11-year period from 1997 to 2007. The first sharp rise will occur during the period 1996–1998, the second sharp during 2002–2004. The main features of the 24 year cycle are as follows: the next minimum in W, associated with the 24th solar cycle, should occur in the year 2008 and the maximum in 2014. W is expected to peak at about 180. The minimum value for the 25th year cycle is expected to occur in the year 2019. It is shown that the accuracy of these predictions depends, first of all, on the extrapolation of the hyperlong harmonic of the calculated polyharmonic model fit of observed annual sunspot numbers during the period 1700–1995. The error bars in the definition of the maximum and minimum epochs can be as large as two years.  相似文献   

18.
Some periods in the sunspot number reconstruction composed by Hoyt and Schatten [Hoyt, D.V., Schatten, K.H. Group Sunspot Numbers: a new solar activity reconstruction. Sol. Phys. 179, 189–219, 1998. Reprinted with figures in Sol. Phys. 181, 491–512, 1998], are based on very few records. For example, there are only a few solar observations during the years 1736–1739. In this paper we intend to improve the reliability of the sunspot numbers reconstruction developed by Hoyt and Schatten for this 4-years period based on information about solar activity published in three journals of that epoch: “Philosophical Transactions”, “Histoire de l’Académie Royale des Sciences”, and “Nova Acta Eruditorum”. We were able to identify 42 papers with solar observations, including 30 with relevant information on sunspots. Based upon this new outlook, a reconstruction of the monthly solar activity for these years is proposed.  相似文献   

19.
Dosimeter data taken on the APEX (1994–1996), CRRES (1990–1991) and DMSP (1984–1987) satellites have been used to study the low altitude (down to 350 km) radiation environment. Of special concern has been the inner edge of the inner radiation belt due to its steep gradient. We have constructed dose models of the inner edge of the belt from all three spacecraft and put them into a personal computer utility, called APEXRAD, that calculates dose for user-selected orbits. The variation of dose for low altitude, circular orbits is given as a function of altitude, inclination and particle type. Dose-depth curves show that shielding greater than 1/4 in Al is largely ineffectual for low altitude orbits. The contribution of outer zone electrons to low altitude dose is shown to be important only for thin shields and to have significant variation with magnetic activity and solar cycle.  相似文献   

20.
An intense (X9.4/2B) flare, which occurred on 6 November 1997, was observed with the hard X-ray telescope on board Yohkoh. In the M2- (33 – 53 keV) and H-band (53 – 93 keV), This flare clearly show double footpoint sources during its impulsive phase. We have analyzed the locations and motions of these sources in detail. It is found that, at 11:53:06 UT, one of the footpoint sources in the M2-band moved to a new position earlier than the corresponding source in the H-band. The time-lag is about one second and the separation between the old and new positions is 5 arcsec. This happened between two major spikes in the time profile of hard X-ray intensity. This apparent motion might indicate that an epoch of energy release finished somewhere high in the corona and the next epoch started in another magnetic field system. This observation clearly shows that higher energy electrons precipitate into the footpoint region later. We try to interpret this particular phenomenon under the two assumptions, which are the direct precipitation model and the trap-and-precipitation model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号