首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A possible quantitative explanation of the semi-annual variation in thermospheric density has been obtained in terms of a semi-annual variation in the computed globally averaged vertical energy carried by propagating tides from the lower and middle atmosphere into the thermosphere. The effect is primarily due to seasonal changes in the distribution of water vapor and in the solar declination angle and Sun-Earth distance. An MSIS-83 empirical model of the thermosphere, representing a revision of the earlier MSIS models, has been prepared. The database used covers a wider range of solar activity than previous models and an improved magnetic storm representation is included. Atomic oxygen profiles in the 100 to 160 km altitude region of the auroral thermosphere have been recalculated from measured quenching of N2(A3u+) using the latest laboratory rates and the results are in good agreement with the mean CIRA 1972 profile. A new empirical model of thermospheric variations with geomagnetic activity has been developed incorporating variations with local magnetic time, latitude dependent terms which can vary with the magnitude of the geomagnetic disturbance, and an altitude dependent expression for the equatorial wave. A new index ML, derived from the AL index, has been developed that appears to have promise to represent the variations of thermospheric species with geomagnetic activity. Satellite measured values of solar UV flux, ground-based observations of CaK plages, sunspot numbers and 10.7 cm solar radio flux have been analyzed for temporal variations. Some differences have been identified and the significance to empirical and theoretical upper atmosphere models is discussed.  相似文献   

2.
本文对Chapman阳光掠射函数[Ch(z_p,χ)]进行了数值积分,求得了其在实际模式大气中随观测高度z_p及天顶角χ的变化.计算并讨论了低热层高温度梯度、分子与湍流扩散、重力场及太阳活动对 Ch(z_p,χ)的影响.结果表明,在150 km以下,Ch(z_p,χ)与前人用等标高模式及等标高梯度模式的计算结果差别较大.其中高温度梯度的影响起主导作用.特别是太阳活动对Chapman函数影响较显著,高年与低年之间可变化10—40%(在大天顶角时),这有可能推动热层大气中辐射-光化学-动力学耦合关系的变化.  相似文献   

3.
对2001-2021年SOHO卫星的极紫外辐射测量数据,以及CHAMP,GRACE-A和SWARM-C卫星资料推导出的高分辨率大气密度数据进行统计分析,发现大气密度与极紫外测量值的相关系数大于密度与F10.7指数的相关系数,证实极紫外辐射在不同地方时的影响程度存在显著差异,从而驱动大气密度的周日变化。利用三颗卫星的高度差异揭示极紫外辐射对大气密度的加热效应在350~500 km范围随着高度增加而减弱。统计得到极紫外辐射影响在地方时和纬度上的空间差异:对夏季半球的影响大于冬季半球;在白天,对中纬度地区的影响高于赤道和高纬度地区;在夜间,密度对辐射的斜率在夏季半球高纬度地区存在峰值,在冬季半球中纬度存在谷值,模型DTM2000和NRLMSISE00未能准确刻画。为了改进经验模型,提出基于球谐函数的拟合方法,优于主流模型周日效应采用的表达式,对周日效应建模和修正提供有益借鉴。利用昼夜间能量传输和热层大气经向环流机制探讨了统计结果的物理机制。  相似文献   

4.
The variability and systematic variations of the properties of the upper mesosphere and lower thermosphere are probably the least well known aspects of the terrestrial atmosphere. Satellite measurements of this region are very limited and rocket and remote sounding techniques do not provide comprehensive coverage. Progress is being made in theoretical studies of this region, primarily with regard to tidal effects, and some progress is being made in analyzing the relatively sparse experimental data that are available. Turbulence dynamics of the region has been studied by analyzing structure measurements at Kwajalein, wind data from Natal and systematic variations of the turbopause altitude determined from measurements of the diffusive separation of argon. One question that is being raised at this time, and it is appropriate at a time near solar maximum, is the extent of solar activity control of the properties of this region of the atmosphere. The occurrence rates and magnitudes of the turbulent diffusivity in the 70 to 90 km altitude region appear to correlate with solar activity with a time lag, as do also the incidence of aurora and the atomic oxygen green line intensity. Solar cycle dependence has been identified in mean zonal wind speeds in the 65 to 110 km altitude region above Saskatoon and in lower thermosphere temperatures measured at Heiss Island and at St. Santin. Millstone Hill data show that the mean meridional wind changes during a solar cycle. Solar cycle variations have also been detected in the stratosphere and troposphere.  相似文献   

5.
We determine the spatial-time patterns of zonally averaged carbon monoxide (CO) in the middle atmosphere by applying Principle Component Analysis to the CO data obtained from the Microwave Limb Sounder (MLS) measurements on the Aura satellite in 2004–2012. The first two principal components characterize more than 90% of the CO variability. Both principal components are localized in the low thermosphere near the mesopause. The first principal component is asymmetric relative to the poles. It has opposite signs in the Northern and Southern Hemisphere at mid to high latitudes and strongly oscillates with an annual periodicity. The second principal component has the same sign in both hemispheres and oscillates mainly with a semi-annual frequency. Both principal components are modulated by the 11-year solar cycle and display short-term variations. To test possible correlations of these variations with the short term solar ultraviolet (UV) variability we use the simultaneous measurements of the UV solar radiance from the Solar-Stellar Irradiance Comparison Experiment (SOLSTICE) on the Solar Radiation and Climate Experiment (SORCE) satellite to investigate the correlation between CO in the middle atmosphere and solar UV in 2004–2012. Using a wavelet coherence technique a weak, intermittent 27-day signal is detected in high-frequency parts of the CO principal components.  相似文献   

6.
The dissipation of energy of electric fields and currents in the polar auroral atmosphere is a major source of energy for the thermosphere ranging locally up to 100 ergs cm?2 sec?1 and perhaps more during the most intense disturbance. Globally the input of energy to the thermosphere can often exceed that due to solar EUV radiation. This energy source is always significant in polar regions and its variable strength with respect to that of the solar EUV radiation determines the behaviour of the middle and low latitude thermosphere. It is extremely difficult to model because of its variability in space and time. Nevertheless understanding the dynamics and composition of the global thermosphere is dependent upon incorporation of this source realistically into models. A further important aspect of this energy source is the consequences of its action in changing the density and composition of the thermosphere globally leading to subsequent changes in the absorption of solar EUV radiation. The ring current may also, at times, be a significant source of energy to the low latitude thermosphere.  相似文献   

7.
平流层,中间层,低热层大气加热过程特性研究   总被引:3,自引:1,他引:2       下载免费PDF全文
本文计算了平流层、中间层和低热层大气中各种光化过程的加热率与大气的冷却率,并且给出了20—140km的大气净加热率的昼夜变化特征.为大气潮汐波的研究提供了基础.  相似文献   

8.
选用了2005年8月20日至2006年7月28日高度550~600 km附近的热层大气密度探测数据,对表征太阳活动的F10.7值和表征地磁活动强度的Ap指数进行了相关特性的统计.分析结果表明,在无明显地磁扰动时热层大气密度日平均值的涨落呈现27日和准半年的周期性变化,但在地磁扰动期间这种变化的周期性会被削弱,且大气密度的周日变化幅度与F10.7值呈正相关关系.   相似文献   

9.
The intensity of continua and emission lines which form the solar UV spectrum below 2100 Å is variable. Continua and emission lines originating from different layers in the solar atmosphere show a different degree of variability. Coronal emission lines at short wavelengths are much more variable than continua at longer wavelengths which originate in lower layers of the solar atmosphere. Typical time-scales of solar UV variability are minutes (flare induced), days (birth of active regions), 27 days (solar rotation), 11 years (solar cycle) and perhaps centuries, caused by long-term changes of the solar activity. UV intensity variations have been determined by either absolute irradiance measurements or by contrast measurements of plages vs. the quiet sun. Plages are the main contributor to the solar UV variability. Typical values for the solar UV variability over a solar cycle are: <1% at wavelengths longer than 2100 Å, 8% at 2080 Å (continuum), 20% at 1900 Å (continuum), 70% at H Lyα, 200% in certain emission lines 1200 < λ < 1800 Å and more than a factor of 4 in coronal lines λ < 1000 Å. Plage models predict the variable component of the solar UV radiation within ±50%. Absolute fluxes are known within ±30%. Several efforts are underway to monitor the solar UV irradiance with a precision better than a few percent over a solar activity cycle.  相似文献   

10.
空间天气对地球及近地空间具有重要影响,大的空间天气事件对中上层大气动力学和成分具有不同的影响。利用全大气耦合模式WACCM,针对太阳耀斑、太阳质子、地磁暴三类事件,以太阳活动平静期2015年5月10-14日的GEOS-5数据为模式背景场,通过F10.7、离子产生率、Kp及Ap指数设置,分别模拟三类事件对临近空间大气温度、密度和臭氧的影响。结果表明耀斑事件在三类事件中对临近空间大气温度和密度的影响最为显著。平流层大气温度增加是由耀斑辐射增强引起平流层臭氧吸收紫外辐射发生的光化学反应所致,耀斑事件引起平流层和低热层温度增加约为2~3 K,低热层大气相对密度增加在6%以内;太阳质子事件及磁暴事件主要影响低热层,但太阳质子事件和磁暴事件对低热层温度扰动不大于1 K。  相似文献   

11.
平流层臭氧和辐射场的季节分布特征   总被引:2,自引:1,他引:1  
利用美国NCAR化学气候耦合模式WACCM3对平流层温度场、风场、臭氧及辐射场进行了模拟.结果表明,在适宜飞艇长期驻留的准零风层高度20~22km(对应大气压强范围为50~30hPa,以下均采用气压值表征对应大气高度),7-8月风速小于5m·s-1的风带可长期稳定在40°N以北.臭氧空间分布显示,在30hPa气压高度处中国地区臭氧浓度出现了带状分布,30hPa高度以下低纬度地区臭氧浓度低于中纬度地区.平流层太阳加热率的时空变化表明,在平流层上层,太阳加热率可达100×10-6K·s-1,而在平流层下层,只有10×10-6K·s-1.6-8月中国区域的太阳加热率大于9月;在100~30hPa高度内,中纬度地区太阳加热率高于低纬度地区,在30hPa高度以上,低纬度地区太阳加热率高于中纬度地区;8-9月30~40hPa高度处,太阳加热率的空间变化较小.在30hPa高度上,太阳加热率在40°N昼夜变化最大;50hPa高度处,太阳加热率的昼夜变化小于30hPa高度处,而且白天太阳加热率出现极大值的纬度明显靠北.平流层低纬度地区的长波加热率小于中纬度地区.青藏高原由于地形特殊,其6-7月的臭氧浓度、太阳加热率和长波加热率均小于同纬度其他地区.   相似文献   

12.
This paper presents a new calculation of neutral gas heating by precipitating auroral electrons. It is found that the heating rate of the neutral gas is significantly lower than previous determinations below 200 km altitude. The neutral gas heating arises from the many exothermic chemical reactions that take place from the ions and excited species created by the energetic electrons. The calculations show that less than half the energy initially deposited ends up heating the neutral gases. The rest is radiated or lost in the dissociation of O2 because the O atoms do not recombine in the thermosphere. This paper also presents a new way of calculating the heating rate per ionization that can be used for efficient determination of the overall neutral gas heating for global thermosphere models. The heating rates are relatively insensitive to the neutral atmosphere when plotted against pressure rather than altitude coordinates. At high altitudes, the heating rates are sensitive to the thermal electron density and long-lived species. The calculations were performed with the Field Line Interhemispheric Plasma (FLIP) model using a 2-stream auroral electron precipitation model. The heating rate calculations in this paper differ from previous heating rate calculations in the treatment of backscattered electrons to produce better agreement with observed flux spectra. This paper shows that more realistic model auroral electron spectra can be obtained by reflecting the up going flux back to the ionosphere at the upper boundary of the model. In this case, the neutral gas heating rates are 20%–25% higher than when the backscattered flux escapes from the ionosphere.  相似文献   

13.
We use a trio of empirical models to estimate the relative contributions of solar extreme ultraviolet heating, Joule heating and particle heating to the global energy budget of the earth’s upper atmosphere. Daily power values are derived from the models for the three heat sources. The SOLAR2000 solar irradiance specification model provides estimates of the daily extreme EUV solar power input. Geomagnetic power comes from a combination of satellite-derived electron precipitation power and an empirical model of Joule power derived from hemispherically integrated estimates of high-latitude heating, which we discuss in this paper. From 1975 to mid-2002, the average daily contributions were electrons: 51 GW, Joule: 95 GW and solar: 784 GW. Joule and particle heating combine to provide more than 17% of the total global upper atmospheric heating. For the top 10% and 1% of heating events, contributions rise to 20% and 25%, respectively. In the top 15 heating events, geomagnetic power contributed more than 50% of the total power budget. During three events, the Joule power alone exceeded solar power.  相似文献   

14.
The cosmic ray ionization source functions which were obtained using a simplified extensive air shower model are used to calculate the eleven year cycle, seasonal and diurnal variations of ionization rate in the low and middle atmosphere. The ionization source function, as a function of the penetrating depth and the energy of cosmic ray particles, is the ionization rate per unit depth for a unit flux of incoming cosmic ray particles with certain energy.The calculation of the eleven year cycle variation of ionization rate in the low and middle atmosphere due to the modulation of galactic cosmic ray intensity by solar activity shows that the amplitude is larger at a higher magnetic latitude and is generally larger at higher altitudes. The relative amplitude of fluctuation of the ionization peak value (at altitudes near 15 km) is up to 45% in the magnetic polar region. The ionization rate, due to the seasonal variation of the atmospheric density, varies from several per cent below the ionization peak to several tens per cent above the peak. This seasonal variation of ionization rate reaches 35% at 70 km. The diurnal variation of atmospheric densities caused by atmospheric tidal oscillation can produce a diurnal variation of the ionization rate to an amplitude of several per cent at altitudes above 40 km. The diurnal oscillation is less than 1% below 35 km.  相似文献   

15.
Measurements of the density and composition of the thermosphere between 150 and 500 km, which were obtained by the S3-1 satellite, have been compared with the Jacchia and MSIS models. The measurements of the densities of O, N2, N and Ar show some differences from the current models which should be considered during the preparation of the next CIRA model. The Ar measurements are particularly useful in examining the response of the neutral atmosphere to geomagnetic heating. These results are useful in establishing the appropriate lower boundary conditions for modeling of the thermosphere.  相似文献   

16.
The different types of variation in the thermosphere are briefly examined and the solar-activity effect is singled out for special attention. To this day, empirical models have made use of the decimetric solar flux F10.7 as an index of the variable XUV radiation from the sun. To account for the change in the relative intensity of the different types of emissions in the course of the solar cycle, F10.7 is made to perform double duty: The daily values are used to represent the day-to-day and “27-day” variations, while its averages over several solar rotations are used to represent the variations with the 11-year cycle. The availability of direct solar XUV data should eventually eliminate the need for such a make-shift procedure. Accuracy and continuity requirements of XUV intensity measurements are discussed and a strategy is outlined for sorting out the relevant features from the observational material and putting them to practical use in thermospheric modeling. It is suggested that future models of the diurnal and the geomagnetic variation use as a guide theoretical models which have achieved considerable success in qualitatively representing the observed phenomena.  相似文献   

17.
The variability of the solar UV irradiance has strong effects on the terrestrial atmosphere. In order to study the solar influence for times when no UV observations are available, it is necessary to reconstruct the variation of the UV irradiance with time on the basis of proxies. We present reconstructions of the solar UV irradiance based on the analysis of space-based and ground-based magnetograms of the solar disk going back to 1974. With COde for Solar Irradiance (COSI) we calculate solar intensity spectra for the quiet Sun and different active regions and combine them according to their fractional area on the solar disk, whereby their time-dependent contributions over the solar cycle lead to a variability in radiation. COSI calculates the continuum and line formation under conditions which are out of local thermodynamic equilibrium (non-LTE). The applied temperature and density structures include the chromosphere and transition region, which is particularly important for the UV. The reconstructions are compared with observations.  相似文献   

18.
19.
Neutral exospheric and lower thermospheric (100–130 km) temperatures from Thomson scatter measurements at Millstone Hill (42°N) are compared with CIRA temperatures with a view towards identifying deficiencies in the CIRA and recommending revisions. CIRA models the observed diurnal mean temperatures (T0) to within 10% over a wide range of solar conditions (75? F10.7 ? 250), but consistently underestimates the diurnal temperatures with maximum deviations approaching 50% of observed amplitudes (180–240 K) at solar maximum (1200 K ? T0 ? 1400 K). The observed semidiurnal amplitudes, which lie in the range of 20K–80K, are always underestimated and frequently by more than 50%. In the lower thermosphere, tidal oscillations of temperature of order 20K–40K occur which are not modelled by CIRA. In addition, an analysis of exospheric temperatures at Millstone Hill during a magnetic disturbance indicates a response within 1–2 hours from storm onset, whereas CIRA assumes a 6.7 hour delay. Although some of these deficiences are addressed by the more recent MSIS model, there exists a sufficient data base to recommend several additional revisions to the CIRA temperatures at this time.  相似文献   

20.
Based on a simplified theoretical interpretation of the composition measurements with the ONMS and OIMS experiments on Pioneer Venus, the conclusion was drawn that the rotation rate of the thermosphere should be close (within a factor of two) to that of the lower atmosphere. A more realistic three-dimensional model of the thermosphere dynamics is now being developed, considering non-linear processes, higher order modes and collisional momentum exchange between the major species CO2, CO and O, which describes the diurnal variations in temperature and composition (Niemann et al., JGR, 1980). The computed horizontal winds are about 300 m/sec near the terminators and poles. Results are also presented from a two-dimensional (quasi-axisymmetric) spectral model which describes the four day superrotation in the lower atmosphere of Venus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号