首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 484 毫秒
1.
针对六自由度并联机构难以实现高精度及快速响应的问题,分析六自由度并联机构模型,提出基于模糊PID的六自由度并联机构的控制算法.介绍了六自由度并联机构的运动学反解模型及机械系统模型;在此基础上确定模糊算法的模糊语言变量、隶属函数和模糊规则,完成了六自由度并联机构模糊PID控制器的设计.针对一组PID控制参数进行了仿真和实验,结果表明,加入模糊算法的PID控制提高了系统的动态响应特性及运动精度.  相似文献   

2.
针对导弹舵机驱动控制系统,设计了一套基于DSP 2812的数字单闭环模糊PID舵机控制系统,同时分析了控制算法、控制器软件设计等问题.并对采用模糊PID参数自整定算法和传统PID算法所得的结果进行了对比分析.试验结果表明:采用基于DSP 2812的数字单闭环模糊PID舵机控制系统后,不仅简化了系统外围设备,而且舵机控制...  相似文献   

3.
针对空调控制系统非线性、大滞后、时变性等特点,通过对中央空调总风量控制法的研究,提出了采用遗传算法神经网络PID控制方法,使空调控制系统具有较高的控制精度和良好的动态特性。仿真及实验结果表明该方法有效可行。  相似文献   

4.
陈旭亮  张琛  季宏丽  裘进浩 《航空学报》2021,42(9):224652-224652
激波控制鼓包SCB是一种减小激波阻力的流动控制技术。为了解决固定挠度鼓包工作范围较窄的问题,提出了一种具有双向记忆效应的形状记忆合金SMA鼓包,通过控制SMA鼓包的温度来改变其挠度。SMA鼓包最大可回复位移为6.1 mm,为鼓包变形区域的2.65%。针对迟滞现象对鼓包挠度控制的影响,基于(Krasnosel'skii-Pokrovskii,KP)模型对SMA鼓包的温度/挠度迟滞特性进行了建模研究。采用粒子群算法来辨识模型参数,辨识得到的迟滞模型最大误差为0.107 mm。设计了2种基于KP模型的PID控制方案,一种为无迟滞补偿的单目标PID控制,一种为迟滞逆模型前馈补偿的双目标PID控制。仿真与实验结果表明,迟滞逆模型前馈补偿的双目标PID控制时域性能优于无迟滞补偿的单目标PID控制。  相似文献   

5.
为获得实验中维持叶栅气动状态稳定的控制方法,研究短周期叶栅风洞气动状态同阀门开度的关系,根据实验的阀门流量特性数据计算阀门开度,准确调试出需要的实验状态.将调压阀流量特性数据作为专家知识同传统PID(比例积分微分)方法相结合,得到实验中维持叶栅气动状态稳定的有效方法,该方法能自动计算控制参数并精确控制叶栅气动状态,而且具有计算量小、压力稳定快以及不会出现震荡的优点.  相似文献   

6.
针对传统PID控制器参数不能随直流电机转速变化而适时整定的缺点,将常规PID控制器与具有自学习功能的神经网络相结合,提出了基于BP神经网络的PID控制算法。通过工控机与PLC之间的通信,实现用户自行开发的神经网络对PID参数的适时整定,其控制效果已经通过实验进行了充分验证,较传统参数固定式PID调速器具有更快的调节速度和更高的调节精度。  相似文献   

7.
针对于超声速导弹的参数时变、不确定的特点,在超声速导弹简化模型的基础上研究了滑模变结构控制方法,通过理论分析和仿真实践证明了滑模控制系统对于不确定系统具有较好的控制效果.并且与PID控制方法进行了对比,发现了滑模控制方法较PID控制方法具有更强的鲁棒性.证明了滑模法对于不确定超声速导弹的有效性.  相似文献   

8.
为快速、精确地复现自由摇滚实验得到的机翼摇滚运动,在控制伺服电机的传统PID参数基础上增加了基准速度修正系数Kv,并将其视作PID参数的一部分,在此基础之上给出了一种PID参数的快速估计方法。利用该方法可以快速得到不同试验状态下控制伺服电机复现机翼摇滚运动的PID参数,提高了调试反馈控制量的效率。同时,发现在进行PID参数调节之前对速度时序曲线进行光滑化预处理,能为进一步进行PID调节打下坚实基础,提高电机驱动模型复现机翼摇滚运动的精度。最后,通过风洞试验对给出的方法进行了实验验证。  相似文献   

9.
针对目前船载测控雷达天线伺服系统中采用传统PID控制存在超调量大、响应时间长等不足,比较了传统PID控制和模糊控制的不同特点,讨论了模糊PID控制器的设计方法,并利用MATLAB软件对系统进行了辅助设计与仿真实验。仿真结果表明,该控制方法可以提高伺服系统的快速性和平稳性,有效增强船载测控系统的跟踪性能。  相似文献   

10.
建立了某型无人直升机的线性化模型,并对动态矩阵控制算法进行了相关的理论研究,结合经典的PID控制应用至某型无人直升机飞行控制系统控制律.经仿真验证,该设计方法可行、合理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号