首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The evolution of two-dimensional (2D) electron phase-space holes (electron holes) has been previously investigated with electrostatic Particle-in-Cell (PIC) simulations, which neglect ion dynamics. The electron holes are found to be unstable to the transverse instability, and their evolution is determined by the combined action between the transverse instability and the stabilization by the background magnetic field. In this paper, the effect of ion dynamics on the evolution of an electron hole is studied. In weakly magnetized plasma (Ωe < ωpe, where Ωe and ωpe are electron gyrofrequency and plasma frequency, respectively), the electron hole is still unstable to the transverse instability. However, it evolves a little faster and is destroyed in a shorter time when ion dynamics is considered. In strongly magnetized plasma (Ωe > ωpe), the electron hole is broken due to the lower hybrid waves, and its evolution is much faster.   相似文献   

2.
In this study we explore physical scaling laws applied to solar nanoflares, microflares, and large flares, as well as to stellar giant flares. Solar flare phenomena exhibit a fractal volume scaling, V(L)  L1.9, with L being the flare loop length scale, which explains the observed correlation between the total emission measure EMp and flare peak temperature Tp in both solar and stellar flares. However, the detected stellar flares have higher emission measures EMp than solar flares at the same flare peak temperature Tp, which can be explained by a higher electron density that is caused by shorter heating scale height ratios sH/L ≈ 0.04–0.1. Using these scaling laws we calculate the total radiated flare energies EX and thermal flare energies ET and find that the total counts C are a good proxy for both parameters. Comparing the energies of solar and stellar flares we find that even the smallest observed stellar flares exceed the largest solar flares, and thus their observed frequency distributions are hypothetically affected by an upper cutoff caused by the maximum active region size limit. The powerlaw slopes fitted near the upper cutoff can then not reliably be extrapolated to the microflare regime to evaluate their contribution to coronal heating.  相似文献   

3.
An empirical formula relating the strength of a storm given by its |Dst|max with the L-coordinate of the peak of storm-injected relativistic electrons is one of a few well-confirmed quantitative relations found in the magneto-spheric physics. We successively extended a dataset of the formula’s basic storms with several events of high Dst-amplitude up to the highest observed |Dst|max = 600 nT. Possible applying of the formula to the predicting of the ring-current plasma-pressure distribution and the lowest westward electrojet position for a storm are discussed. We have also analyzed the 2000–2001 years’ data on relativistic electrons from our instruments installed on EXPRESS-A (geosynchronous orbit; Ee = 0.8–6 MeV), Molniya-3 (h = 500 × 40 000 km, i = 63°; Ee = 0.8–5.5 MeV) and GLONASS (h = 20 000 km, i = 64°; Ee  l MeV) along with other correlated measurements: GOES series (Ee > 2 MeV), geomagnetic indices (Dst, AE, AL) and interplanetary parameters (solar wind, IMF). The goal is to investigate which outer conditions are most responsible for the high/low output of the storm-injected relativistic electrons. For the geosynchronous orbit, two factors are found as the necessary condition of the highest electron output: high and long-lasting substorm activity on a storm recovery phase and high velocity of solar wind. On the contrary, extremely low substorm activity surely observed during whole the storm recovery phase constitutes a sufficient condition of the non-increased after-storm electron intensity. For the first time found cases of the increased after-storm electron intensity observed at the inner L-shells with no simultaneously seen increase in the geosynchronous distances are presented.  相似文献   

4.
Space satellite observations in an electron phase-space hole (electron hole) have shown that bipolar structures are discovered at the parallel cut of parallel electric field, while unipolar structures spring from the parallel cut of perpendicular electric field. Particle-in-cell (PIC) simulations have demonstrated that the electron bi-stream instability induces several electron holes during its nonlinear evolution. However, how the unipolar structure of the parallel cut of the perpendicular electric field formed in these electron holes is still an unsolved problem, especially in a strongly magnetized plasma (Ωe > ωpe, where Ωe is defined as electron gyrofrequency and ωpe is defined as plasma frequency, respectively). In this paper, with two-dimensional (2D) electrostatic PIC simulations, the evolution of the electron two-stream instability with a finite width in strongly magnetized plasma is investigated. Initially, those conditions lead to monochromatic electrostatic waves, and these waves coalesce with each other during their nonlinear evolution. At last, a solitary electrostatic structure is formed. In such an electron hole, a bipolar structure is formed in the parallel cut of parallel electric field, while a unipolar structure presents in the parallel cut of perpendicular electric field.   相似文献   

5.
High accuracy satellite drag model (HASDM)   总被引:2,自引:0,他引:2  
The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab’s High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.  相似文献   

6.
In both the ionospheric barium injection experiments CRIT I and CRIT II, a long-duration oscillation was seen with a frequency close to the gyro frequency of barium and a time duration of about one second. A model for the phenomenon which was proposed for the CRIT 1 experiment is here compared to the results from CRIT II which made a much more complete set of measurements. The model follows the motion of a low-β ion cloud through a larger ambient plasma. The internal field of the model is close to antiparallel to the injection direction vi but slightly tilted towards the self-polarization direction EP = −vixB. As the ions move across the magnetic field, the space charge is continuously neutralized by magnetic-field aligned electron currents from the ambient ionosphere, drawn by the divergence in the perpendicular electric field. These currents give a perturbation of the magnetic field related to the electric field perturbation by ΔEBVa. The model predictions agree quite well with the observed vector directions, field strengths, and decay times of the electric and magnetic fields in CRIT II. The possibility to extend the model to the active region, where the ions are produced in this type of self-ionizing injection experiments, is discussed.  相似文献   

7.
从离子连续性方程和动量方程出发,比较全面地考虑了太阳光电离、星光电离、地冕电离、星际背景电离和流星离子流等电离源,综合分析Es层的主要动力学过程和光化学过程,以风剪切理论为基础,研究中性成分碰撞、电场作用、金属离子作用和分子离子作用等机制对离子分布的影响,建立了一维时变电离层Es物理模型.对离子产生率、垂直方向的离子速度在高度和时间上的变化进行仿真和计算,得到了在电场及风剪切作用下的离子密度剖面24h内的变化规律.根据建立的模型,以昆明相干散射雷达观测的径向风结果作为模型输入参考,仿真并得到了电离层Es电子密度的时空分布,据此反演出电离层Es临界频率f0Es.与昆明站电离层测高仪同时间观测的情况进行对比,结果比较一致,验证了建立的Es层物理模型正确性.   相似文献   

8.
Ring current ions and relativistic electrons simultaneously measured on board MOLNIYA-1 are analyzed in comparison with the ground-based magnetometer data for the period of a strong magnetic storm (|Dst|max≈230 nT). Injection of >500 keV electrons into the slot region (L≈3) near equatorial plane is occurred on time scale ≈1 hour, when, during the magnetic storm maximum, the extreme low-latitude position of auroral electrojets is reached and ring current becomes more symmetrical. Positions of both the ring current maximum and electron intensity maximum (Lmax) are consistent to our previous result: |Dst|max = 2.75 • 104/L4max. An extreme storm-time low-latitude position of the west electrojet center (for amplitudes of |Dst|max up to 600 nT) is shown to be in a good consistence with this empirical dependence. It is supposed the trapped radiation boundary collapses down to L≈Lmax in the course of the storm main phase.  相似文献   

9.
The EXCEDE III sounding rocket flight of April 27, 1990 used a 18 Ampere 2.5 keV electron beam to produce an artificial aurora in the region 90 to 115 km. A “daughter” sensor payload remotely monitored the low-energy X-ray spectrum while scanning photometers measured the spatial profile of prompt emissions of N2+ (1N) and N2 (2P) transitions (3914Å and 3805Å, respectively). Two Ebert-Fastie spectrometers measured the spectral region from 1800 to 8000Å. On the “mother” accelerator payload, the return current electron differential energy spectra were monitored by an electrostatic analyzer (up to 10 keV) and by a retarding potential analyzer (0 eV to 100 eV). We present an overview of the results from this experiment.  相似文献   

10.
稳态等离子体推进器羽流场数值模拟   总被引:2,自引:1,他引:2  
采用二维轴对称模型,使用粒子网格法(PIC)和直接模拟蒙特卡洛法(DSMC)相结合的方法,对稳态等离子体推进器(SPT)羽流场进行了数值模拟.采用DSMC方法中的随机取样频率法(RSF)求解粒子碰撞过程,并对比了不同的分配电荷方式、电子运动模型及SPT出口条件时的羽流场.将不同条件计算得到的羽流场中距SPT出口0.1?m,0.5?m及1.0?m处的离子电流密度和电荷密度与实验结果进行了对比,得出在采用面积权重法分配电荷、等熵模型描述电子运动和用实验值设定发动机出口参数时对SPT羽流场数值模拟的电流密度和轴向附近的电荷密度结果与实验结果符合程度较好的结论.  相似文献   

11.
Thin Current Sheets (TCS) are regularly formed prior to substorm breakup, even in the near-Earth plasma sheet, as close as the geostationary orbit. A self-consistent kinetic theory describing the response of the plasma sheet to an electromagnetic perturbation is given. This perturbation corresponds to an external forcing, for instance caused by the solar wind (not an internal instability). The equilibrium of the configuration of this TCS in the presence of a time varying perturbation is shown to produce a strong parallel thermal anisotropy (T T) of energetic electrons and ions (E>50keV) as well as an enhanced diamagnetic current carried by low energy ions (E<50keV). Both currents tend to enhance the confinement of this current sheet near the magnetic equator. These results are compared with data gathered by GEOS-2 at the geostationary orbit, where the magnetic signatures of TCS, and parallel anisotropics are regularly observed prior to breakup. By ensuring quasi-neutrality everywhere we find, when low frequency electromagnetic perturbations are applied, that although the magnetic field line remains an equipotential to the lowest order in Te/Ti, a field-aligned potential drop exists to the next order in (Te/Ti). Thus the development of a TCS implies the formation of a field-aligned potential drop ( few hundred volts) to ensure the quasi-neutrality everywhere. For an earthward directed pressure gradient, a field-aligned electric field, directed towards the ionosphere, is obtained, on the western edge of the perturbation (i.e. western edge of the current sheet). Thus field aligned beams of electrons are expected to flow towards the equatorial region on the western edge of the current sheet. We study the stability of these electron beams and show that they are unstable to “High Frequency” (HF) waves. These “HF” waves are regularly observed at frequencies of the order of the proton gyrofrequency (fH+) just before, or at breakup. The amplitude of these HF waves is so large that they can produce a strong pitch-angle diffusion of energetic ions and a spatial diffusion that leads to a reduction of the diamagnetic current. The signature of a fast ion diffusion is indeed regularly observed during the early breakup; it coincides with the sudden development of large amplitude transient fluctuations, ballooning modes, observed at much lower frequencies (fH+). These results suggest that the HF waves, generated by field-aligned electron beams, provide the dissipation which is necessary to destabilize low frequency (ballooning) modes.  相似文献   

12.
New experimental data obtained on the orbital station ‘MIR’ in 1991 during solar maximum are discussed. Electron fluxes with Ee>75 keV were registered for three different directions as well as for electrons with Ee>300 and 600 keV. Spatial and time distributions of electron fluxes in the trapping region are presented. In the inner radiation belt an additional maximum is observed at L=1.25–1.35, and the fluxes in the 22-05h MLT interval are 2–3 orders of magnitude smaller, than during other local times. In this region a flattening of the electron spectrum is observed. The results obtained were compared with the AE-8 model.  相似文献   

13.
Based upon the most efficient electron acceleration near the midplane of 3D non-neutral driven reconnecting current sheet (RCS) and the electrostatic wave excitation by the drift Maxwellian distribution of electrons in Vlasov simulation, we assume that the electrostatic waves mainly propagate opposite to the reconnecting electric field and investigated how these waves affect the electron acceleration. The main results are: (1) when the electron’s velocity equals to the phase speed of the waves, they will be trapped and have the different accelerating characteristics from the untrapped electrons through solving the momentum equations of electrons analytically; (2) the test particle simulations further prove that the number of the energetic electrons decreases with the increasing intensity of unstable waves, and the distribution of the energetic electrons takes on the double power-law.  相似文献   

14.
Based on analytical calculations we have currently argued that spontaneous reconnection through thin collisionless current sheets is an essentially three-dimensional (3 D) process (Büchner, 1996 a, b). Since 3 D kinetic PIC codes have become available, the three dimensional nature of the collisionless current sheet decay are now illustrated by numerical simulations (Büchner and Kuska, 1996; Pritchett and Coroniti, 1996; Zhu and Winglee, 1996). While the latter two claim a coupling to a longer wavelength kink mode as a main factor, destabilizing thin current sheets in 3 D, our simulations have revealed that even shorter scale perturbations in the current direction suffice to destabilize thin sheets very quickly. Since past simulation runs, however, were limited to mass ratios near unity, the influence of the electrons was not treated adequately. We have now investigated the stability of thin collisionless current sheets including 64 times lighter negatively charged particles. We can now show that while the two-dimensional tearing instability slows down for M = Mp/me = 64, the three-dimensional current sheet decay is a much faster process — practically as fast as the mass ratio M = 1 3 D sheet decay, even without kinking the sheet. We further conclude that, unlike the two-dimensional tearing instability, the three-dimensional decay of thin current sheets is not controlled by the electrons. For a sheet width comparable with the ion inertial length, we also recovered signatures of the Hall effect as predicted by Vasyliunas (1975) in the mass ratio M = 64 case. The ion inertial length seems to be the critical scale at which the sheet starts to decay.  相似文献   

15.
黄勇  程立  张方 《空间科学学报》2012,32(3):348-353
在电离层高度释放SF6气体能够显著扰动电离层.根据SF6分子在电离层中的扩散方程,同时考虑其在电离层中主要的离子化学反应,研究了SF6气体释放后电离层各粒子浓度的时空变化,计算了产生人工气辉的体发射系数和发射强度.结果表明,SF6气体在电离层高度释放后,电子和O+的密度均有大幅度下降,主要的负离子成分由电子转变成SF5-;在释放过程中,主要产生777.4 nm和135.6 nm两种气辉,且前者的气辉强度远小于后者;电离层温度对气辉的强度有很大的影响.本文的数值计算与美国IMS/SF6实验观测数据进行比较,结果近似,且通过数据比较还能准确推断出实验时当地的电离层温度.  相似文献   

16.
We present an analysis of sporadic and recurrent injections of magnetospheric ions in the midnight auroral oval during substorms and of the associated ionospheric ion outflows. The source of plasma sheet precipitating ions is determined using a simple method, based on the measured relation between the ion inverse velocity and time (l = v × t). This method is applied here to two typical passes of the Interball-Auroral (IA) satellite at distances of 3 RE above the auroral regions. Substorm related ion injections are shown to be mainly due to time of flight effects. In contrast with particle trajectory computations (Sauvaud et al., 1999), the inverse velocity method does not require magnetic and electric field models and can thus be used systematically for the detection of time of flight dispersed ion structures (TDIS). This allowed us to build a large database of TDIS events and to perform a statistical analysis of their spatial distribution. For the cases presented here the source region of the injected ions is found at radial distances from 18 to 30 RE near the equatorial magnetosphere. At Interball altitudes ( 3 RE), ion injections detected at the poleward boundary of the nighside auroral oval are associated with shear Alfvén waves superimposed over large-scale quasi-static current structures. We show that the most poleward TDIS are collocated with a large outflow of ionospheric H+ and O+ displaying pitch-angle distributions peaked in the pitch-angle range 90°–120°. These ions are thus accelerated perpendicularly to the magnetic field not only in the main auroral acceleration region but also up to at least 3 RE. The expanding auroral bulge thus constitutes a significant source of H+ and O+ ions for the mid-tail magnetosphere.  相似文献   

17.
The nonlinear propagation of ion–acoustic (IA) waves in a magneto–rotating plasma is studied by considering the Kappa-Cairns electron distribution. Employing the perturbation scheme, Korteweg–de Vries equation is derived. It is seen that both positive and negative potential solitons can be supported in the present plasma model. The numerical results reveal that the Kappa-Cairns distributed electrons modify features of the electrostatic waves significantly. The effects of non–thermal parameters, plasma rotation frequency, ion temperature, and the wave propagation angle on electrostatic solitary wave structures are also discussed here. It is found that the plasma parameters considerably influence the propagation of IA waves in rotating plasmas. Furthermore, using the bifurcation theory of planar dynamical systems to the K-dV equation, we have presented the existence of solitary and periodic traveling waves. Our study may be helpful to understand the behavior of ion–acoustic wave in the rotating plasma.  相似文献   

18.
    
采用水热合成的方法,以硫脲(NH2CSNH2)为硫源和还原剂,合成出了二硫化钼/石墨烯(Mo S2/Graphene)复合电催化剂用于电解水制氢.将其旋涂到掺杂氟的Sn O2透明导电玻璃(FTO)上制备成Mo S2/Graphene薄膜进行电催化分解水制氢性能测试.研究发现,Mo S2/Graphene的催化活性较纯纳米Mo S2提高了近一倍.这是由于通过化学耦合作用选择性生长在石墨烯上的层状Mo S2其边缘拥有丰富的活性位点,同时石墨烯作为良好的导电基体也能大大加快了电子的转移速度.在0.5 mol/L H2SO4溶液中,Mo S2/Graphene旋涂到FTO上的层数为12层时,其电催化制氢效率最高:起峰电位提前到0.085 V,在0.2 V的过电位下电流密度达到了-4.5 m A/cm2.层状Mo S2/Graphene电催化剂作为Pt族贵金属的替代品,具有广阔的应用前景.  相似文献   

19.
针对高速移动通信,多普勒效应和多径效应导致信道非均匀,提出一种基于拉曼努金和的频谱可调的非均匀调制多载波系统.首先,根据拉曼努金和的正交性和周期性,推导了拉曼努金傅里叶正反变换的完全重建条件,进而建立基于拉曼努金和的多载波调制系统(RFMT,Ramanujan Fourier Multi-Tone system).由于拉曼努金和的非均匀频谱分布性质及频率共振性质,RFMT在不同载波通道的误比特率不同,可实现对数据的不均等保护.在非均匀信道下RFMT具有优于OFDM的抗多径能力,仿真验证了RFMT的抗多径有效性.在使用迫零均衡算法时,10-5误比特率下,根据信道情况设计的非均匀多载波系统RFMT对Eb/N0的要求可以比OFDM低4 dB.   相似文献   

20.
采用扫描电镜、能谱分析、透射电镜等分析方法研究了球磨对YAl2及YAl2/Mg颗粒的组织形貌、YAl2颗粒在YAl2/Mg颗粒中的分散性及YAl2/Mg界面结合状况的影响.结果表明:YAl2颗粒经球磨20 h后,其平均粒径约为1.5 μm,颗粒边缘尖角数量明显减少,呈圆滑的近球形.加入Mg颗粒进行混合球磨20 h后,YAl2颗粒在混合颗粒中呈弥散分布,且表面包裹一层单质Mg,YAl2/Mg的界面为直接结合型,未发现有界面反应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号