首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 812 毫秒
1.
基于响应面法的跨声速机翼气动优化设计   总被引:13,自引:4,他引:9  
响应面法由于其高效、实用的特点,近年来在优化设计领域受到越来越多的重视。本文将响应面法引入到气动数值优化设计中,完成了跨声速机翼单、多目标多约束气动优化设计。该方法采用D优化准则在设计空间内选择一系列样本点,通过求解三维Euler方程进行气动数值试验,来建立二次多项式响应面模型,并在此基础上得到优化的气动外形。以M6机翼为原始机翼的单、多目标多约束优化设计算例表明:采用的响应面法能够较好的捕捉在跨声速流动中目标函数的非线性特征和消除流动中的高频噪声;响应面模型精度满足设计要求,计算误差均小于3%,因而保证了设计方法的实用有效。对于单目标机翼阻力优化设计,阻力系数减少了19%左右。  相似文献   

2.
基于响应面法的低速翼型气动优化设计   总被引:1,自引:0,他引:1  
响应面方法相较于其它直接优化方法有其高效、实用的优势,此前的研究更多地将响应面方法用于超音速和跨音速翼型的减阻优化设计中。本文将此方法应用于低速翼型优化设计中,进行了基于RANS(Reynolds-Aver-aged Navier-Stokes)方程和自由转捩预测耦合求解的低速翼型气动优化设计。通过计算附面层方程得到附面层参数并用en方法计算转捩位置,并考虑了T-S波和层流分离造成的转捩。RANS方程计算中,使用了转捩过渡区模型,以保证附面层外边界压力分布的精度。RANS方程和转捩预测迭代进行至转捩位置收敛。在响应面模型计算中,使用不含二阶交叉项的二阶多项式模型,减少了构造模型所需的计算量;合理的选择设计空间保证了构造的响应面模型具有较高的精度。使用三个设计点的多目标优化设计,保证了设计的合理性。通过对NACA64(1)-112翼型优化计算结果表明,本文的方法可以有效地进行低速翼型的气动优化,各设计点上转捩位置也得到了改善,有较好的工程实用前景。  相似文献   

3.
空天飞行器飞行空域大,速域宽,经历亚/跨/超/高超声速飞行,气动特性变化大,传统翼型难以同时满足低速、高速时的设计要求,给机翼/翼型设计提出了新的挑战.本文围绕飞行环境特点,分析了低速高升力与高速高升阻比、升重匹配、结构热防护等设计要求,提出了空天飞行器对机翼/翼型设计的新需求.基于一种新的宽速域翼型,采用数值模拟方法,开展三维流动下翼型与机翼平面形状的一体化优化设计,获得了一种翼型沿展向变化的新机翼,相对优化前,低速时机翼产生的升力效率提高了36.3%,超声速和高超声速升重平衡升阻比分别提高了33.4%和12.9%,新机翼能更好地兼顾低速、跨声速、超声速和高超声速气动性能的要求.将新机翼应用于典型空天飞行器,再通过全机气动外形优化设计,进一步提高了宽速域飞行时升重平衡下的使用升阻比,高亚声速时提高了5.9%,超声速时提高了10.3%,高超声速时提高了0.7%,解决了低速飞行时高升力与高速飞行时高升阻比的需求矛盾,并获得了一种满足宽速域总体设计要求的空天飞行器气动布局.研究成果具有一定工程指导意义.  相似文献   

4.
基于近似技术的高亚声速运输机机翼气动/结构优化设计   总被引:6,自引:0,他引:6  
探索基于近似技术的高亚声速运输机机翼气动/结构多学科设计优化方法,建立了基于近似技术的多学科设计优化框架。气动学科采用全速势方程加黏性修正进行翼身组合体跨声速流动的气动计算,结构学科采用有限元分析方法进行应力与变形计算。采用均匀设计法给出若干样本点,分别采用二次响应面、Kriging模型和径向基神经网络等多种近似技术,构造气动学科和结构学科的近似分析模型,并对几种近似模型精度进行了分析和比较。研究发现,Kriging模型和二次响应面具有几乎等同的较高的近似精度,神经网络的近似精度则较差,由于二次响应面计算量更小,故最终选定为机翼设计优化的近似方法。以升阻比和结构重量为目标,考虑升力、机翼面积以及应力和应变约束条件,对运输机机翼4个外形参数和4个结构参数进行多目标、多约束优化设计。优化后的机翼具有较好的气动/结构综合性能,表明本文方法是可行的。  相似文献   

5.
孙祥程  韩忠华  柳斐  宋科  宋文萍 《航空学报》2018,39(6):121737-121737
对于现代高超声速飞行器的设计而言,除了需要保证高超声速的性能外,还必须兼顾满足工程需求的亚跨超声速特性。首先,采用雷诺平均Navier-Stokes(RANS)方程流动求解器,结合基于Kriging模型的代理优化算法,开展了高超声速飞行器宽速域翼型的优化设计研究,设计出了一种下表面具有双"S"形特征的新翼型。综合性能评估结果表明,该翼型相比于常规的高超声速翼型,在跨声速和高超声速下具有更加优良的气动特性;其跨声速状态下的升阻比达到78.9,高超声速状态下的升阻比达到5.94,能够实现宽速域内良好的综合气动性能。其次,开展了仿德国"桑格尔号"(SANGER)空天飞机运载机机翼的气动特性研究,对配置宽速域翼型与常规高超声速翼型的机翼进行了气动力特性综合对比分析。结果表明,配置新翼型的机翼在宽速域范围内整体气动性能更优,说明所设计的宽速域翼型在三维机翼上也具有一定的实用价值。  相似文献   

6.
宽速域气动设计是水平起降高超声速飞行器研制的瓶颈问题之一.水平起降高超声速飞行器在飞行过程中需要经历亚、跨、超和高超声速多个速域,而适应不同速域的最佳气动外形相互矛盾,使得实现良好的宽速域气动设计面临极大挑战.首先,针对高超声速飞行器宽速域翼型气动设计问题,发展了基于代理模型的高效全局气动优化设计方法,并设计出一种相对厚度为4%、有一定弯度、下表面具有双"S"形特征的宽速域翼型.将新翼型与常规四边形和双弧形翼型进行了气动特性对比,并进行了流动机理分析,结果表明新翼型的宽速域综合气动特性显著优于常规翼型,从而证明发展兼顾亚、跨、超和高超声速气动性能的宽速域翼型是可行的.其次,开展了宽速域翼型的多目标优化设计,通过分析Pareto解集中翼型的宽速域气动性能随几何外形变化的演化规律,进一步解释了有一定弯度、下表面呈双"S"形的薄翼型能够协调亚、跨、超声速与高超声速气动性能的原理.最后,采用平面外形为梯形的机翼,进行了三维机翼构型下的宽速域翼型多目标优化设计.三维优化设计结果与二维结果具有相似的几何特征和压力分布,说明这种通过下表面双"S"形小弯度薄翼型来兼顾亚、跨、超和高超声速气动性能的宽速域流动机理同样适用于三维情况,也证实了翼型设计对于宽速域高超声速飞行器仍然具有重要意义.  相似文献   

7.
跨声速层流翼型的混合反设计/优化设计方法   总被引:1,自引:1,他引:0  
陈静  宋文萍  朱震  许朕铭  韩忠华 《航空学报》2018,39(12):122219-122219
跨声速层流翼型设计须兼顾优良的超临界特性和自然层流特性,因而对设计方法提出了更高的要求。针对现有反设计方法和直接优化设计方法的不足,发展了一种适用于跨声速层流翼型的混合反设计/优化设计方法。该方法引入了基于经验的局部流场特征作为反设计目标,翼型性能指标作为直接优化设计目标,然后加权形成了混合反设计/优化设计总目标,并同时考虑了气动和几何约束。优化算法采用基于自适应并行加点技术的代理优化,流动数值模拟采用耦合基于线性稳定性理论的eN转捩自动判定的雷诺平均Navier-Stokes(RANS)方程求解器。针对现代中短程民用客机需求,以NPU-LSC-72613翼型为基准,开展了层流翼型减阻的混合反设计/优化设计。分别将局部目标压力分布、总阻力作为反设计和直接优化设计目标,得到了较好的优化结果,验证了方法的有效性。经过2轮优化结果显示混合反设计/优化设计总目标显著下降。所设计翼型吸力面局部压力分布与目标压力分布基本一致,总阻力下降15.5%;吸力面和压力面层流范围均大于55%倍弦长,激波强度显著减弱,说明所设计翼型同时具有优良的超临界和层流特性。将所设计翼型配置到机翼上,通过三维数值模拟进行校验,结果显示所设计跨声速层流机翼升阻比提高了6.64%,在一定升力系数范围内,气动性能均有显著提高,验证了所设计跨声速层流翼型在机翼设计中的适用性。  相似文献   

8.
基于工程的跨声速机翼两步优化设计方法   总被引:1,自引:1,他引:0  
李沛峰  张彬乾  陈迎春 《航空学报》2011,32(12):2153-2162
以跨声速机翼设计中权衡气动性能和总体设计要求的工程应用为出发点,在保证机翼结构重量和容积不变的约束下,提出了平面形状优化与剖面翼型优化结合的两步优化设计策略.应用神经网络和遗传算法,建立了相应的设计方法.采用两步优化方法进行跨声速机翼设计,第一步设计中,通过平面形状优化,增大机翼展弦比、减小诱导阻力是机翼气动性能改善的...  相似文献   

9.
本文目的是研究和开发工程实用的高可信度数值优化设计技术,并应用于先进跨声速飞机机翼的三维气动外形优化设计。本文综合应用了自由几何变形(FFD)几何外形参数化方法、弹簧比拟非结构网格变形方法、基于RANS方程的高可信度计算流体力学(CFD)分析方法、径向基函数(RBF)代理模型方法、粒子群寻优(PSO)方法等技术,分别对NASA CRM模型、航空工业设计的W2机翼模型展开了单设计点和多设计点的三维气动外形优化设计。通过对单设计点优化设计后的CRM翼身组合体、双设计点优化设计后的W2机翼模型气动外形进行详细的气动分析,发现优化后的CRM翼身组合体、W2机翼模型相对初始外形气动性能得到显著改进,证实了数值优化设计技术应用于先进跨声速飞机机翼三维气动外形设计的有效性。同时证实了开发的数值优化设计技术和工具的正确性和实用性。  相似文献   

10.
本文将数值优化方法同计算流体动力学(CFD)相结合,形成两种跨声速翼型的气动设计方法,即:最优化方法和反设计方法。采用求解Euler方程的有限体积法计算流场,通过结合优化算法,从正反两个方向对跨声速翼型进行气动优化设计。实例证明它们是翼型气动设计的有效方法,有较高的工程应用价值。  相似文献   

11.
基于响应面法的机翼气动/结构一体化优化设计研究   总被引:4,自引:1,他引:4  
基于响应面法进行了机翼气动/结构一体化优化设计研究,流动控制方程为三维欧拉方程,采用有限体积法进行数值求解,应力和结构变形采用有限元方法计算,静气动弹性分析采用强耦合迭代方式,响应面模型采用二次多项式来构造。以跨音速M6机翼为初始机翼,进行了多目标、多约束情形下的气动/结构综合优化设计,优化后所得到的新机翼具有更佳的气动/结构综合性能,升阻比增加了9.25%,而重量减轻了4.84%;响应面模型精度满足设计要求,拟合误差均不超过1%;这说明本文所发展气动/结构综合优化设计方法是成功且有效的,具有广泛的应用前景。  相似文献   

12.
基于气动数值模拟的翼型反设计方法   总被引:3,自引:0,他引:3  
赵小虎  阎超 《航空学报》1997,18(6):648-651
将计算流体动力学(CFD)与反设计技术相结合,通过数值求解欧拉方程,对翼型绕流流场作出数值模拟,再用几何和流动控制方程,反复迭代求得满足给定流场的翼型。以NACA0012为初始翼型,RAE-2822为目标翼型,选取两种工况,都取得了满意的结果。  相似文献   

13.
基于N-S方程的跨声速翼型多目标多约束优化设计   总被引:5,自引:2,他引:3  
本文将粘性流场分析和数值优化方法耦合起来,发展了一种跨声速翼型设计方法,用以提高翼型在一个或多个设计点、在多种约束条件下的气动性能。由粘性流场分析程序计算得到的升力、阻力等气动参数构成目标函数,数值优化程序对其进行最小化。粘性流场分析采用了雷数平均N-S方程,这比过去翼型设计中使用的全速势方程或Euler方程更能模拟流动的本质,因而设计结果的可靠性大大提高了。优化算法采用传统的拟牛顿法(Quasi  相似文献   

14.
针对高升阻比风力机翼型前缘曲率半径较大的问题,传统的翼型参数化方法前缘控制能力不足,且基于面元法XFOIL预测精度差的问题,利用增强类函数/形函数转换(CST)参数化方法控制翼型的形状变化、拉丁超立方实验设计、计算流体力学(CFD)流场计算模块、高斯过程回归模型和遗传算法,提出了基于高可信度Reynolds average Navier-Stocks(RANS)和高斯回归模型辅助遗传算法的翼型优化设计方法。结果表明:基于高斯回归模型的翼型优化方法,可以将优化所用CFD计算次数降低一阶,从而大幅度提升优化设计效率。由标准算例超临界翼型RAE2822的降阻设计表明,在百次量级的CFD次数阻力降低43.16%,激波被削弱且升力、力矩和面积严格满足约束。由风力机翼型NACA64618的最大化升阻比优化设计表明,所设计翼型不仅在设计攻角和副设计攻角处升阻比大大增加,在整个小攻角范围内其气动性能都得到了提升,且两个主设计点,无不良阻力的产生。   相似文献   

15.
进行了基于响应面优化方法的低速翼型多点/多目标多约束设计方法研究。分析了完全二阶多项式模型(完全模型)和不含二阶交叉项的多项式模型(简化模型)对优化的影响,并分别进行了单目标和多目标的优化设计。结果表明多目标优化可以改善单目标设计的翼型性能在设计点附近取得极值的局限,而且用简化模型进行的更多设计变量的设计结果要优于完整模型的设计结果。  相似文献   

16.
现代自然层流翼型的设计方法   总被引:1,自引:0,他引:1  
本文介绍一种设计跨声速自然层流翼型的计算流体力学(CFD)方法。本方法采用“正反迭代、余量修正”设计原理,通过将跨声速翼型设计软件NPU-TD2D中的反设计程序进行改进,并与含有层、湍流混合边界层修正的跨声速层流翼型计算程序DLRBGKWALZ耦合,实现了在跨声速粘性流动条件下直接设计层流翼型。亚、超临界的设计实例和风洞验证表明,本方法可以在几个设计迭代内设计出压力分布、转捩位置及气动参数均准确收敛于设计目标的新翼型,是一种设计现代自然层流翼型的有效而实用的CFD方法。  相似文献   

17.
朱自强  夏智勋  吴礼义 《航空学报》1992,13(10):463-468
给出一种跨音速翼型和机翼的反设计计算方法。对所应用的积分方程反方法引入人工粘性项;采用Riegels因子法消除前缘奇性;对强激波问题采用光滑-松弛过程;并将方程中的系数积分成解析形式;对二维翼型反设计计算还提出了一种封闭形式的正则化条件。算例结果表明,该方法对跨音速翼型和机翼设计是一种有效的工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号