首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
In low pulse-repetition frequency (PRF) pulse radars, signal-to-noise ratio (SNR) is usually calculated on a per pulse basis and this value is then multiplied by the number of pulses integrated to obtain the SNR for a given duration of target illumination. In high PRF pulse Doppler radars, SNR is usually calculated by using the centerline power of the transmitted signal spectrum as the target return power because the centerline is kept in the receiver and returns of the PRF lines are notched out [1]. We show here that both methods of SNR calculations are entirely equivalent for matched transmit-receive radar systems.  相似文献   

2.
Simple Procedures for Radar Detection Calculations   总被引:2,自引:0,他引:2  
The literature of radar contains results of Rice, Marcum, Swerling, and Schwartz in several families of curves, which permit radar engineersto estimate the signal energy ratio required for a given level of detectionperformance. The variety of radar problems, however, makes itimpractical to construct curves for all combinations of radar and targetparameters. The concept of detector loss is used here to evaluate lossesattributable to integration and collapsing, with an accuracy of ±0.3 dBon steady targets. This is added to a separate fluctuation loss, modifiedfor diversity effects, to obtain results on all Swerling target modelsand also on partially correlated targets. The accuracy of the combinedlosses is ±0.5 dB for a wide range of detection and false-alarm probabilities.Starting from the basic single-sample detection curves, onlythree additional graphs are needed to find the energy ratio for givendetection performance in any of these cases. Examples are given whichshow the ease with which different radar options may be compared asto performance on an arbitrary type of target.  相似文献   

3.
The inverse problem of finding the required signal-to-noise ratio (SNR) given a set of probability parameters and number of samples is a nontrivial problem. Several past attempts have proposed simple approximations for the SNR, but the achieved accuracy varied across the parameter space and was at times poor. The approximation equations proposed here are considerably more accurate over a larger parameter space.  相似文献   

4.
The optimum system for intercepting frequency-hopped signals uses a channelized receiver and a likelihood-ratio test (LRT). Previous results on the performance of the optimum system have been based on Gaussian assumptions, which are generally valid for transmissions having large time-bandwidth areas. Results, obtained by Monte Carlo simulation, for relatively small time-bandwidth transmissions are given here. The signal model is a simple one known as “pure frequency hopping.” Comparisons with the LRT show that energy detection loss increases when the time-bandwidth product of the transmission is increased by increasing the number of frequencies, even when the number of pulses is also increased. The loss decreases when only the number of pulses is increased. Over the parameter range observed, binary detection loss tends to increase with the number of pulses and decrease with the number of frequencies. Results are included for a moving-window version of the LRT. A parameter of the LRT is the signal-to-noise ratio (SNR). The effect of using a design value not equal to the true SNR is shown  相似文献   

5.
Mismatched filtering of odd-periodic binary sequences   总被引:2,自引:0,他引:2  
Binary sequences with perfect periodic autocorrelation functions, as required in communications, radar, and measuring, are not known for any lengths >4. As a possible remedy, mismatched filtering can be used to entirely suppress any sidelobes of the periodic autocorrelation function at the expense of a reduced signal-to-noise ratio (SNR). In this work, the mismatched filtering method is extended to the odd-periodic autocorrelation function whose technical implementation is no more complex than that of periodic sequences. A new class of odd-periodic binary sequences is constructed that exist for many more lengths and exhibit significantly lower mismatched filtering losses than any known periodic sequences  相似文献   

6.
In this paper, we consider an amplify-and-forward (AF) cooperative communication system when the channel state information (CSI) used in relay selection differs from that during data transmission, i.e., the CSI used in relay selection is outdated. The selected relay may not be actually the best for data transmission and the outage performance of the cooperative system will deteriorate. To improve its performance, we propose a relay selection strategy based on maximum a posteriori (MAP) estimation, where relay is selected based on predicted signal-to-noise ratio (SNR). To reduce the computation complexity, we approximate the a posteriori probability density of SNR and obtain a closed-form predicted SNR, and a relay selection strategy based on the approximate MAP estimation (RS-AMAP) is proposed. The simulation results show that this approximation leads to trivial performance loss from the perspective of outage probability. Compared with relay selection strategies given in the literature, the outage probability is reduced largely through RS-AMAP for medium-to-large transmitting powers and medium-to-high channel correlation coefficients.  相似文献   

7.
A moving target indicator (MTI) preceding a coherent integrator causes a degradation in the signal-to-noise ratio (SNR). This negative effect can be reduced by weighting of the MTI output pulses before the integration process. Two examples are given which show the improvement in SNR and detection probability as a result of this weighting.  相似文献   

8.
On suboptimal detection of 3-dimensional moving targets   总被引:1,自引:0,他引:1  
The author designates matched filters that are completely characterized by the velocity of the target as assumed velocity filters (AVFs). Like most matched filtering techniques where the signal parameters range in a continuum, the AVF must be implemented suboptimally by partitioning the velocity space. The author investigates the possibility of using a signal-to-noise ratio (SNR) loss factor as the criterion for the partition. The loss factor is a measurement of the loss of SNR at the output of the matched filter due to mismatch of filter parameters. In the scenario of detecting a moving satellite from a ground-based sensor, because of the vast sky the sensor has to search, it is important to keep the number of filters minimal. The author shows that, with a fixed loss factor, the number of filters required for coverage increases linearly as the span of the two-dimensional velocity space increases quadratically. The rate of increase is further reduced when the loss factor is made proportional to expected target angular speed  相似文献   

9.
Frequency-hopping signal detection using partial band coverage   总被引:1,自引:0,他引:1  
The performance of a channelized radiometer in detecting a frequency-hopping signal is analyzed for a variable number of parallel radiometers not necessarily covering the entire hopping band. The full band may not be covered because of an attempt to avoid interfering signals, limited radiometer resources, lack of knowledge of the band frequency location, or combinations of these factors. The analysis provides for calculation of the value of the signal-to-noise ratio (SNR) required to achieve a given probability of detection for a specified false-alarm rate, assuming an observation interval equivalent to N hops using either a fixed or a moving observation window. The dependence of the probability of detection on a misalignment of the detector observation intervals with the hop transitions is also analyzed. Numerical results are presented and discussed. Applied to a typical slow-hopping VHF radio, the results imply that a 150-hop transmission can be detected by a channelized radiometer covering half the hopping band when the SNR is about 2 dB  相似文献   

10.
Current track-before-detect (TBD) algorithms are developed and analyzed using a path statistic for each potential object trajectory. However this path statistic does not characterize overall performance gain. We propose a pixel-based statistic. This allows the TBD approach to be characterized as an image enhancement algorithm with detection gains compared with single frame detections. It is shown that for the TBD approach to have superior detection over single frame detection the target signal-to-noise ratio (SNR) must be greater than a threshold SNR in order to overcome the uncertainty in the target path. Tradeoffs are made for a class of velocity constrained target paths in terms of the detection gain with respect to the maximum target velocity and number of frames integrated  相似文献   

11.
Frequency-Agile Radar Signal Processing   总被引:1,自引:0,他引:1  
Modern radars may incorporate pulse-to-pulse carrier frequency modulation to increase probability of detection, to reduce Vulnerability to jamming, and to reduce probability of interception. However, if coherent processing is used for clutter rejection, the frequency of N consecutive pulses must be held constant for N-pulse clutter cancellation or Doppler filtering. If M pulses are transmitted during the time the antenna illuminates a target, there are M/N coherently integrated echoes available for noncoherent integration in the computer or the operator's display to further improve the signal-to-noise ratio (SNR). In this paper, analytical and simulation methods are employed to determine the balance between coherent and noncoherent integration that yields the greatest SNR improvement. Attention is focused upon a model using peak selection of fast Fourier transform (FFT) Doppler channels and is compared to a reference model involving only a single Doppler channel. Curves of detectable SNR as a function of M and N are presented for both models.  相似文献   

12.
In the theory of signal detectability, the signal-to-noise ratio (SNR), defined as the quotient of the average received signal energy and the spectral density of the white Gaussian noise, is a fundamental parameter. For a signal which is exactly known, or known except for a random phase, this ratio uniquely defines the detection performance which can be achieved with a matched filter receiver. However, when the signal amplitude is a random parameter, the detection performance is changed and must be determined from the probability density function (pdf) of the amplitude. Relative to the case of a constant signal amplitude, such signal amplitude fluctuation usually degrades performance when a high probability of detection (Pd) is required, but improves performance at low values of Pd; the corresponding change in the required SNR is the so-called signal fluctuation loss Lf. Thus, since Lf in some cases represents an improvement in performance for low values of Pd, a question of at least theoretical interest is: how large might this improvement be, when the class of all signal amplitude pdf's is considered. The solution, presented here, results in a lower bound on the signal fluctuation loss Lf as a function of Pd, or equivalently an upper bound on Pd as a function of SNR. The corresponding most favorable pdf was determined using the Lagrange multiplier technique and results of a numerical maximization are included to provide insight into the general properties of the solution.  相似文献   

13.
The loss in output signal-to-noise ratio (SNR) due to amplitude limiting is obtained for a radar circuit consisting of a bandpass limiter, coherent demodulator, matched filter, and moving-target-indicator (MTI) filter. The circuit is used in scanning MTI radars. The tandem connection of the limiter and coherent demodulator is a model for the saturation of the intermediate-frequency (IF) demodulator of an MTI radar. Results on special functions are used to obtain simple formulas for the loss in output SNR relative to a linear IF demodulator when the input SNR is less than -15 dB and the number of hits per 3-dB beamwidth exceeds 15.  相似文献   

14.
The integration time which maximizes the signal-to-noise ratio (SNR) for uncompensated processing of a pulse having a quadratic phase component is derived.  相似文献   

15.
A technique is presented for maximizing the percentage of usable Doppler bandwidth throughout which a radar return can be detected while maintaining an acceptable clutter suppression. The technique employs the weighted Chebyshev approximation to the design of a transversal high-pass digital filter which has an optimal passband ripple for a given number of filter weights and associated integration gain consistent with the required increase in signal-to-noise ratio needed for acceptable probabilities of detection and false alarm. Conventional approaches to the design of a movingtarget arget indictor (MTI) filter which maximizes the improvement factor by clutter suppression typically improve the signal-to-background noise ratio over less than 50 percent of the range between dc and the pulse-repetition frequency fT. This technique can increase the usable bandwidth to 80 percent or more of fT. Two examples are included which utilize parameter values from the Army Missile Command's experimental radar and demonstrate the interactive influence of such filter parameters as the number of weights, passband ripple and bandedge, and stopband attenuation and cutoff.  相似文献   

16.
GLRT Detectors for Aircraft Wake Vortices in Clear Air   总被引:1,自引:1,他引:0  
 In this article, radar echoes of aircraft wake vortices are modeled as weighted sums of the frequency components of the echoes with a special covariance matrix for the weighted coefficients. With a proposed detection scheme, two generalized likelihood ratio test (GLRT) detectors are derived respectively for aircraft wake vortices with time-varying and time-invariant Doppler spectra. Then the analytical expressions for detection and false alarm probabilities of the detectors are derived and three factors are investigated which mainly influence the detection performance, i.e., the Doppler extension and uncertainty of the aircraft wake vortex, and the number of the detection cells. The results indicate that, the signal-to-noise ratio (SNR) loss induced by Doppler extension is generally several decibels. The SNR loss due to Doppler uncertainty is approximately proportional to the logarithm of the number of spectrum lines in the uncertain Doppler spectrum intervals. For a large number of detection cells, the SNR gain is approximately proportional to the square root of the number of the detection cells.  相似文献   

17.
Assuming a sinusoidal signal superimposed on a narrow-band Gaussian noise as the input to a receiving array, the output power and signal-to-noise ratio of a digital beamformer with postfiltering were formulated so that subsequent calculations could be made without an analysis in the frequency domain. The formulation utilized the quantizer functions previously given by the author and certain spectral power distribution factors originally attributed to Davenport but more rigorously derived and discussed in the present work. A numerical study based on this formulation for a DIMUS array in a correlated noise field reveals that except for certain rare circumstances, postfiltering generally improves the output SNR or array gain. It is demonstrated that the amount of postfiltering gain not only varies with array input SNR but also depends strongly upon the spacing-to-wavelength ratio, and its meaningful interpretation can only be made in conjunction with both the clipping and noise correlation losses. In particular, balancing postfiltering gain against the two losses suggests that receiving arrays with element spacings smaller than one-half of the operating wavelength may be used to the advantage of system design under certain conditions.  相似文献   

18.
The probability of detecting m or more pulses contiguously-that is, in a row-from a pulse train of n pulses is determined when the detection of each pulse is an independent Bernoulli trial with probability p. While a general closed-form expression for this probability is not known, we present an analytical procedure that gives the exact expression for the probability of interest for any particular case. We also present simple asymptotic expressions for these probabilities and develop bounds on the probability that the number of pulses that must be observed before m contiguous detections is greater than or less than some particular number. We consider the implications for binary integration in radar and electronic warfare problems  相似文献   

19.
Some data indicate that aircraft targets viewed from certain aspects are well modeled as consisting of a few specular reflectors. The effect of a simplified form of this target model upon radar detection performance for two different waveforms has been analyzed. The signal-to-noise ratio (SNR) required for detection as a function of waveform bandwidth for a conventional-single-channel waveform and for a four-channel frequency diversity waveform is evaluated. It is shown that for either waveform there is an optimum bandwidth to minimize the SNR required for detection. In addition, the single-channel minimum is less than the four-channel minimum. The best performance occurs for the single-channel waveform when the waveform bandwidth just resolves the individual reflectors. For typical targets, this bandwidth is of the order of 35 to 75 MHz. It is also shown that only a 0.8-dB loss relative to this minimum is incurred when using a four-channel narrow bandwidth waveform.  相似文献   

20.
随着低轨(LEO)卫星数量的不断增加,利用LEO星座辅助增强GNSS导航性能已经成为一种新的趋势.针对低信噪比环境下B1C信号难以捕获的问题,提出了一种基于LEO辅助的B1C信号高灵敏快速捕获算法.首先对提升接收机捕获灵敏度进行了分析,对比了相干积分与非相干积分对于信号处理增益的影响,得出在低轨导航增强信号的辅助下采用增加相干积分时间的捕获算法对低信噪比条件下B1C信号的捕获更有效.然后提出了一种基于LEO辅助的B1C高灵敏快速捕获算法,从理论分析和实验仿真两方面,对比验证了在LEO辅助下可以显著提高B1C信号的捕获灵敏度,缩短捕获时间,提高捕获效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号