首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The results of detecting quasi-stationary electric fields onboard the Kosmos-1809 satellite and observing sea storms and typhoons are analyzed jointly. We have detected an amplification of the electric field in the low-latitude ionosphere that is related to the preparatory stage and development of tropical storms and typhoons. In this case, the electric field strength can reach 20 mV/m, an anomalously high value for the low-latitude and near-equatorial ionosphere. High-accuracy estimates of the electric field strength are made on the basis of a model of its origination as a result of the generation of an extraneous electric current in the disturbed region of the lower atmosphere and the impact of these currents on the global atmosphere–ionosphere system of currents.  相似文献   

2.
The paper describes quasi-periodic and aperiodic variations in the phase and amplitude of radio waves of LF and VLF ranges, which accompanied the flight and explosion of the Chelyabinsk meteoroid. Quasi-periodic variations in the phase have been explained by the generation of acoustic-gravity waves in the atmosphere, which modulate the electron density in the ionosphere and the phase of radio waves. Aperiodic variations in the phase and amplitude of radio waves are associated with an increase in the electron density in the lower ionosphere (at altitudes of 65–70 km). This increase was most likely caused by the interactions of subsystems in the Earth–atmosphere–ionosphere–magnetosphere system or, more correctly, by the precipitation of high-energy electrons from the magnetosphere into the lower ionosphere, which was stimulated by the flight and explosion of a cosmic body. According to the estimates, the density of the flux of electrons with energies of 100 KeV should be on the order of 106 m–2 s–1.  相似文献   

3.
The results of the satellite low-latitude and mid-latitude measurements of the disturbed plasma concentration, electron temperature, and quasi-stable electric field at heights of ~900 km after sunset are discussed. It is shown that the sharp fronts of changes in the electron temperature and plasma density observed in the experiment onboard the Intercosmos-Bulgaria-1300 satellite in the low-latitude (and equatorial) outer ionosphere can be related to damping of the oscillations of plasma electrons at local decreases of the plasma density (plasma “pits”) and formation of the vortex plasma structures at density and temperature gradients, which promotes conservation of ionosphere irregularities and makes the fronts of concentration variations steeper. Nonmonotonic variations in the plasma conductivity for the ionosphere currents in unstable plasma can be a cause of observed nonmonotonic disturbances of the vertical component of the “constant” electric field.  相似文献   

4.
The degree of uncertainty that arises when mapping high-orbit satellites of the Cluster type into the ionosphere using three geomagnetic field models (T89, T98, and T01) has been estimated. Studies have shown that uncertainty is minimal in situations when a satellite in the daytime is above the equatorial plane of the magnetosphere at the distance of no more than 5 RE from the Earth’s surface and is projected into the ionosphere of the northern hemisphere. In this case, the dimensions of the uncertainty region are about 50 km, and the arbitrariness of the choice of the model for projecting does not play a decisive role in organizing satellite support based on optical observations when studying such large-scale phenomena as, e.g., WTS, as well as heating experiments at the EISCAT heating facility for the artificial modification of the ionosphere and the generation of artificial fluctuations in the VLF band. In all other cases, the uncertainty in determining the position of the base of the field line on which the satellite is located is large, and additional information is required to correctly compare the satellite with the object in the ionosphere.  相似文献   

5.
The magnetosphere and ionosphere response to arrival of large changes of the solar wind dynamic pressure with sharp fronts to the Earth is considered. It is shown that, under an effect of an impulse of solar wind pressure, the magnetic field at a geosynchronous orbit changes: it grows with increasing solar wind pressure and decreases, when the solar wind pressure drops. Energetic particle fluxes also change: on the dayside of the magnetosphere the fluxes grow with arrival of an impulse of solar wind dynamic pressure, and on the nightside the response of energetic particle fluxes depends on the interplanetary magnetic field (IMF) direction. Under the condition of negative Bz-component of the IMF on the nightside of the magnetosphere, injections of energetic electron fluxes can be observed. It is shown, that large and fast increase of solar wind pressure, accompanied by a weakly negative Bz-component of the IMF, can result in particless’ precipitation on the dayside of the auroral oval, and in the development of a pseudobreakup or substorm on the nightside of the oval. The auroral oval dynamics shows that after passage of an impulse of solar wind dynamic pressure the auroral activity weakens. In other words, the impulse of solar wind pressure in the presence of weakly negative IMF can not only cause the pseudobreakup/substorm development, but control this development as well.  相似文献   

6.
Space charge sheath formation in a magnetized plasma flow around space bodies is considered for the cases of high surface conductivity, free electron emission, dipole magnetic field. The results are applied to explain different phenomena in the ionosphere and magnetosphere of the Earth and planets such as polar aurora and kilometric radiation of the Earth and decametric radiation of the Jovian satellite Io.  相似文献   

7.
One-dimensional MHD simulations of solitary sharp and strong disturbances (impulses) of the interplanetary magnetic field and plasma of the homogeneous solar wind were performed. The characteristics of a disturbance of this type, recorded onboard the WIND spacecraft (SC) rather far from the Earth, were taken as initial conditions. The results of numerical experiments simulating the evolution of this disturbance in the moving interplanetary plasma, whose parameters correspond to observations of the WIND and INTERBALL-1 SC, show the efficiency of the computer code developed with the special purpose of investigating low-frequency wave events in the space environment. The calculated characteristics of the impulse resulting from the evolution are in good agreement with parameters of the disturbance recorded by the INTERBALL-1 SC closer to the Earth. In particular, the impulse expands due to imbalance of thermal and magnetic pressures, but keeps its abrupt boundaries. It was demonstrated that stable plasma objects, corresponding to stationary MHD solutions, could really exist in the solar wind plasma for a long time.  相似文献   

8.
Kirpichev  I. P. 《Cosmic Research》2004,42(4):338-348
The results of an analysis of the pressure distribution of the hot magnetosphere plasma and transverse currents in the plasma at distances from 8R E to 12R E are presented. The data were taken in the vicinity of the equatorial plane onboard the Interball-1 satellite during its passages on October 13, 1995 and March 13, 1996. The pressure was determined from the measurements of particle fluxes by the CORALL, DOK-2, and SKA-2 instruments. The specific features of this experiment made it possible to calculate the pressure with a high accuracy and to determine the distribution of the magnetostatically equilibrium currents in the plasma. It is shown that at the parts of the monotonous increase of the pressure in the earthward direction one can detect regions of plateau in the plasma pressure. A possible origin of the small-scale variations and regions with plateau are discussed. A comparison of the measured pressure profiles with the pressure profiles in the Tsyganenko and Mukai-2003 model is performed. Transverse currents flowing in the plasma are calculated assuming magnetostatic equilibrium.  相似文献   

9.
Several types of numerical models are used to analyze the interactions of the solar wind flow with Mercury’s magnetosphere, including kinetic models that determine magnetic and electric fields based on the spatial distribution of charges and currents, magnetohydrodynamic models that describe plasma as a conductive liquid, and hybrid models that describe ions kinetically in collisionless mode and represent electrons as a massless neutralizing liquid. The structure of resulting solutions is determined not only by the chosen set of equations that govern the behavior of plasma, but also by the initial and boundary conditions; i.e., their effects are not limited to the amount of computational work required to achieve a quasi-stationary solution. In this work, we have proposed using the magnetic field computed by the paraboloid model of Mercury’s magnetosphere as the initial condition for subsequent hybrid modeling. The results of the model have been compared to measurements performed by the Messenger spacecraft during a single crossing of the magnetosheath and the magnetosphere. The selected orbit lies in the terminator plane, which allows us to observe two crossings of the bow shock and the magnetopause. In our calculations, we have defined the initial parameters of the global magnetospheric current systems in a way that allows us to minimize paraboloid magnetic field deviation along the trajectory of the Messenger from the experimental data. We have shown that the optimal initial field parameters include setting the penetration of a partial interplanetary magnetic field into the magnetosphere with a penetration coefficient of 0.2.  相似文献   

10.
Gdalevich  G. L.  Izhovkina  N. I.  Ozerov  V. D. 《Cosmic Research》2003,41(6):561-566
The observational data on the plasma density and electron component temperature in the region of the geomagnetic equator in the ionosphere F layer are presented. The measurements have been conducted by scientific equipment onboard the Kosmos 900 satellite (on August 7, 1979). A plasma cavern was observed in this region. It is shown that the formation of the cavern may be related to the attenuation of the electrostatic plasma instability and plasma vortices in the upper ionosphere at the geomagnetic equator.  相似文献   

11.
离子推力器的栅极结构复杂、电压高,两栅之间容易发生放电,给离子电推进正常工作带来影响,文章提出推力器加工工艺和过程污染物是产生放电的主要原因。分析国内外离子电推进系统放电现象,建议采用放电保护设计,以有效保护电推进系统及卫星的正常工作。文章以电源处理单元为主,给出了针对离子推力器栅极放电的保护设计和系统控制保护措施。  相似文献   

12.
Lin-Sen Li 《Acta Astronautica》2011,68(7-8):717-721
The perturbation effects of the Coulomb drag on the orbital elements of the earth satellite moving in the ionosphere are studied. The theoretical results show that the Coulomb drag results in both the secular and periodic variation in the semi-major axis and eccentricity. However, the argument of the perigee exhibits no secular variation, but only periodic variation. The inclination and the ascending node remain no variation. As an example, the secular effects of the Coulomb drag on the semi-major axis and the eccentricity of an ionosphere satellite Alouette (S-27) are calculated in the ionosphere with the mean height 1000 km. It can be shown that the semi-major axis contracts and the eccentricity decreases for the case of the Coulomb drag under the interaction of the ions with the electric field of an earth satellite.  相似文献   

13.
Is it theoretically possible to perform magnetotelluric sounding in order to determine the conductivity of a planet’s interior based on the registration of variable electric and magnetic fields on a low-orbiting space probe? In this case, fast magnetosonic (FMS) waves in the planetary magnetosphere can play the role of sounding waves. It has been indicated that the registration of FMS-wave impedance (the ratio of the electric and magnetic components) onboard the probe actually makes it possible to estimate the planetary conductivity for a planet with a magnetosphere and ionosphere.  相似文献   

14.
Teodosiev  D.  Stanev  G.  Galev  G.  Neichev  S.  Pushchaev  P. 《Cosmic Research》2000,38(6):574-578
The reliability and precision of satellite measurements of electric fields are significantly determined by the performance of probes used for these purposes. For measurements of the vector of the constant electric field and three components of the variable electric field in the frequency band from 0.1 Hz to 20 kHz on the INTERBALL-2 satellite, the method of a double probe and the scheme of three pairs of sensors are used. In manufacturing the sensitive units of the probes, an original Bulgarian technology for glass-carbon coating on their spherical surfaces was used. The results of measurements (by the Siesmann–Kelvin method) of variations of electron work function from the surface of the spherical probes with glass-carbon coating have shown mean statistical variations W < 0.006 eV. To minimize the errors in measuring electric fields, a construction of the probes as monoblocks with balancing and guarding electrodes was developed and used. The guarding electrodes are under a bias voltage in the limits from 0 to 12 V to decrease the influence of currents caused by photoelectrons emitted by different units of the satellite construction. The value of this bias was determined by choosing the working point of the voltage–current characteristic. The optimum value of the bias current for the auroral area was in the limits 70–100 nA. Output signals from the sensors of the IESP-2M instrument were used in measuring electric fields by the MEMO and NVK-ONCh instruments included in the wave complex.  相似文献   

15.
A statistical analysis of the shape and location of the magnetopause according to the INTERBALL-1 satellite data for the period 1995–1997 is carried out. The instants of crossing the magnetosphere boundaries obtained by the plasma and magnetic data are compared with computations based on three empirical models, namely, Petrinec and Russel, 1996; Shue et al., 1997; and Shue et al., 1998. The state of the interplanetary medium (dynamic pressure of the solar wind plasma P d and the B z component of the interplanetary magnetic field) was determined by the measurements onboard the WIND spacecraft. We estimate the accuracy of the considered models for different groups of boundary crossings: single, multiple with small duration (less than 40 min), and multiple with large duration (more than 40 min). It is demonstrated that the small-scale motions of the boundary (<1R E) are observed more often in the dayside magnetosphere, especially near the cusp region. Large-scale boundary oscillations (>1R E) are more common in the tail region of the magnetosphere, namely, its flanks. Various models give similar results: about 50% of all events have deviations by more than 1R E from the model locations. In some cases, the deviation of the measured location of the magnetosphere boundary from the model prediction may be as large as 5–6R E for all three models considered, the actual boundary being more often located nearer to the Earth than the result of model computations. The best model is that of Shue et al., 1998, but it does not differ significantly from the other models.  相似文献   

16.
Using a single event as an example, we make an analysis of the time development of a substorm and estimate its influence on the motion of the low-latitude boundary of the magnetosphere. To this end, we compare the data on plasma and magnetic field obtained by five spacecraft (WIND, INTERBALL-1, GEOTAIL, GOES-8, and GOES-9) with measurements made by ground-based stations. It is shown that the release of energy of the geomagnetic tail begins from a disruption of the current sheet near the Earth. The high-speed plasma stream that transfers a magnetic flux to the Earth and can have an effect on the magnetic field configuration near the Earth is detected later. Almost simultaneously with a substorm onset a series of magnetopause crossings has been detected by the INTERBALL-1 satellite on the evening side of the low-latitude magnetosphere. In this paper we consider some of possible causes of this motion of the magnetosphere boundary, including variations of parameters of the solar wind, Kelvin-Helmholtz instability, and substorm processes. It is shown that fast motions of the magnetopause are detected almost simultaneously with field variations in the near magnetotail of the Earth and geomagnetic pulsations Pi2 on ground-based stations. A sufficiently high degree of correlation (K = 0.67) between the amplitude of Pi2 pulsations and the amplitude of magnetic field variations near the magnetopause is probably indicative of the connection of short-term motions of the magnetosphere boundary with the tail current disruption and the process of formation of a substorm current wedge.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 4, 2005, pp. 248–259.Original Russian Text Copyright © 2005 by Nikolaeva, Parkhomov, Borodkova, Klimov, Nozdrachev, Romanov, Yermolaev.  相似文献   

17.
An analysis of enhancements in the fluxes of electrons with energies above 300 keV registered onboard of the Coronas-F satellite in the polar regions at the boundary of the outer radiation belt is performed. Cases are revealed when the increases in question were observed consequently during multiple crossings of the outer radiation belt boundary. Localization of the revealed events relative to the auroral oval using the data of almost simultaneous observations of electrons with energies of 0.1–10 keV on the Meteor-3M satellite and OVATION model is studied. It is shown that almost all studied increases in relativistic electrons are localized at latitudes of the auroral oval. Various mechanisms which could cause the observed increases are discussed, as well as a possibility of formation of local traps of energetic particles in the high-latitude magnetosphere.  相似文献   

18.
Dynamics of changes of the electric fields in the daytime and nighttime sectors of the high-latitude ionosphere is studied. The following facts are demonstrated: (a) With the onset of active phases of substorms, a decrease occurs in the value of the electric potential difference in the daytime sector. It is especially abrupt with the onset of the expansion phase, which is related to a decrease and the end of reconnection at the dayside magnetopause. (b) With the onset of active phases of substorms, an increase in the value of the electric potential difference in the nighttime sector occurs. It is sharply intensified with the onset of the expansion phase, this fact being caused by the intensification of the reconnection in the nighttime magnetotail. (c) There exists a relation, close to a functional dependence, between the values of the electric potential differences in the nighttime sector and | AL | index.  相似文献   

19.
Measurements of the wave emission of the topside ionosphere made onboard the APEX satellite using the electric component of the wave field in the 0.1–10 MHz frequency band are presented. At middle latitudes a wave intensity decrease was observed in the broad-band spectrum of the electrostatic noise at the electron cyclotron frequency. It is shown that a break in the spectrum of electrostatic modes at the electron cyclotron frequency (the absence of the plasma eigen-frequencies) may be a cause of the observed effect. The increase of the intensity at the electron cyclotron frequency in the ionospheric trough and at latitudes above the trough region as compared to middle latitudes may be explained by the capture by plasma irregularities of the electromagnetic emission of the auroral electron fluxes.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 3, 2005, pp. 201–208.Original Russian Text Copyright © 2005 by Izhovkina, Prutensky, Pulinets, Kiraga, Klos, Rothkael.  相似文献   

20.
The relations between electric fields in the daytime and nighttime sectors of the polar ionosphere and magnetic activity indices of auroral region (AL) and northern polar cap (PCN) are studied. It is found that the above relations do exist and are described by: a) equations U pc(1) (kV) = 27.62 + 21.43PCN with a correlation coefficient R = 0.87 and U pc(1) (kV) = 4.06 + 49.21PCN - 6.24 PCN2 between the difference in the electric potentials across the polar cap in the daytime sector U pc(1) and PCN and b) regression equation U pc(2) (kV) = 23.33 + 0.08|AL| with R = 0.86 between the difference in the electric potentials across the polar cap in the nighttime sector U pc(2) and |AL|. It is shown that: a) it is possible to use the AL and PCN indices for real-time diagnostics of instantaneous values of the electric fields in the daytime and nighttime sectors of the polar ionosphere in the process of a substorm development; b) at the expansion phase of a substorm, due to calibration of PCN values by the values of the solar wind electric field E sw, the PCN index does not feel the contribution of the western electrojet and, accordingly, the contribution of the nighttime ionospheric electric field U pc(2), governed by the reconnection in the magnetospheric tail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号