首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
On the basis of measurements made at Japanese magnetic stations and using GPS satellites for the 12 months of 2003, a comparison of simultaneous variations of three components of the magnetic field and total electron content (TEC) was carried out in the range of the planetary waves period. The correlation analysis has shown that almost synchronous variations exist within this range of periods at the ground-based magnetometer stations and in the TEC measurements both during strong magnetic disturbances and in quiet periods. The strong magnetic disturbances could be considered as a possible independent source of ionospheric variations within the planetary waves range, while the accompanying ionospheric storms could be a possible factor changing the conductivity of the lower ionosphere plasma. In quiet periods, the correlation of magnetic variations and disturbances in TEC is caused by the direct impact of atmospheric planetary waves on the lower ionosphere and can be related to variations of ionospheric currents due to the dynamo mechanism.  相似文献   

2.
Specific features of propagation of a wideband rectangular pulse along the route spacecraft-Martian surface-spacecraft caused by the influence of the planetary ionosphere are considered as applied to the problem of radio pulse sounding of the subsurface Martian soil from the Mars-Express satellite. The night Martian ionosphere considerably reduces the energy of the pulse, but does not lead to degradation of its envelope or uncertainty function. When sounding a two-layer surface, the influence of the ionosphere is also manifested in limitation from below of the thickness of the upper layer accessible for measurement, which is more essential than when sounding with the use of a wideband Gaussian pulse. It is demonstrated that the surface sounding is possible through the dayside planet ionosphere at the parameters of operating pulse of the MARSIS radar.  相似文献   

3.
Because of their different origins, cosmic rays can be subdivided into galactic cosmic rays and solar/stellar cosmic rays. The flux of cosmic rays to planetary surfaces is mainly determined by two planetary parameters: the atmospheric density and the strength of the internal magnetic moment. If a planet exhibits an extended magnetosphere, its surface will be protected from high-energy cosmic ray particles. We show that close-in extrasolar planets in the habitable zone of M stars are synchronously rotating with their host star because of the tidal interaction. For gravitationally locked planets the rotation period is equal to the orbital period, which is much longer than the rotation period expected for planets not subject to tidal locking. This results in a relatively small magnetic moment. We found that an Earth-like extrasolar planet, tidally locked in an orbit of 0.2 AU around an M star of 0.5 solar masses, has a rotation rate of 2% of that of the Earth. This results in a magnetic moment of less than 15% of the Earth's current magnetic moment. Therefore, close-in extrasolar planets seem not to be protected by extended Earth-like magnetospheres, and cosmic rays can reach almost the whole surface area of the upper atmosphere. Primary cosmic ray particles that interact with the atmosphere generate secondary energetic particles, a so-called cosmic ray shower. Some of the secondary particles can reach the surface of terrestrial planets when the surface pressure of the atmosphere is on the order of 1 bar or less. We propose that, depending on atmospheric pressure, biological systems on the surface of Earth-like extrasolar planets at close-in orbital distances can be strongly influenced by secondary cosmic rays.  相似文献   

4.
The possibilities of using the Martian soil subsurface sounding radar for investigating the structure of the plasma shell surrounding the planet have been considered. Based on the numerical modeling results and actual soil sounding data, it has been shown that the soil sounding mode of the radio-locating MARSIS radar can be used to assess the structure of the Martian ionosphere. As the emitted signals pass to the planet’s surface, it is possible to use the reflected signals to estimate the total electron content of the Martian ionosphere along the flight track of the spacecraft.  相似文献   

5.
A Monte Carlo computer model of extra-solar planetary formation and evolution, which includes the planetary geochemical carbon cycle, is presented. The results of a run of one million galactic disc stars are shown where the aim was to assess the possible abundance of both biocompatible and habitable planets. (Biocompatible planets are defined as worlds where the long-term presence of surface liquid water provides environmental conditions suitable for the origin and evolution of life. Habitable planets are those worlds with more specifically Earthlike conditions). The model gives an estimate of 1 biocompatible planet per 39 stars, with the subset of habitable planets being much rarer at 1 such planet per 413 stars. The nearest biocompatible planet may thus lie approximately 14 LY distant and the nearest habitable planet approximately 31 LY away. If planets form in multiple star systems then the above planet/star ratios may be more than doubled. By applying the results to stars in the solar neighbourhood, it is possible to identify 28 stars at distances of < 22 LY with a non-zero probability of possessing a biocompatible planet.  相似文献   

6.
Surkov  V. V.  Galperin  Yu. I. 《Cosmic Research》2000,38(6):562-573
A solution to the problem of current spreading is constructed in the case of relaxation of electric charges, which have arisen in the mesosphere for one reason or other. These currents penetrate into the conductive region with anisotropic conductivity of the D- and E-layers of the ionosphere, being transformed to a MHD-wave that propagates into the magnetosphere. Based on this solution, the form and spectrum of the generated MHD signal are calculated for Alfvenic and magnetosonic modes coming out to the ionosphere and magnetosphere. Electric charges and currents can arise, for example, in the space between a thunderstorm cloud and the ionosphere, or between the shock wave from a ground explosion and the ionosphere. Some signal parameters accepted in the model are close to those expected for high-altitude electric discharges of the Red Sprite type. The conditions are determined under which the Alfven impulse with an amplitude of up to 100 nT propagates in the magnetosphere above high-altitude discharge of this type. Such an impulse was recorded by the AUREOL-3 satellite after the ground explosion MASSA-1. Recently, this impulse was hypothesized to originate as a result of a high-altitude electric discharge. The hypothesis on a similar MHD pulse allows one to explain in a semiquantitative way the short burst of electron field-aligned acceleration observed by the DE-2 satellite over the Debbie hurricane. The high-altitude atmospheric discharge of this type can be a powerful, though short-time and local, source of electrons with kiloelectronvolt energies at low and middle latitudes. One could expect that such an effect causes a modified character of the so-called Trimpi-effect (a short-term disturbance of propagation of VLF waves in the ionosphere), and thus, it can be observable.  相似文献   

7.
In the 1990s, based on detailed studies of the structure of active regions (AR), the concept of the magnetosphere of the active region was proposed. This includes almost all known structures presented in the active region, ranging from the radio granulation up to noise storms, the radiation of which manifests on the radio waves. The magnetosphere concept, which, from a common point of view, considers the manifestations of the radio emission of the active region as a single active complex, allows one to shed light on the relation between stable and active processes and their interrelations. It is especially important to identify the basic ways of transforming nonthermal energy into thermal energy. A dominant role in all processes is attributed to the magnetic field, the measurement of which on the coronal levels can be performed by radio-astronomical techniques. The extension of the wavelength range and the introduction of new tools and advanced modeling capabilities makes it possible to analyze the physical properties of plasma structures in the AR magnetosphere and to evaluate the coronal magnetic fields at the levels of the chromosphere–corona transition zone and the lower corona. The features and characteristics of the transition region from the S component to the B component have been estimated.  相似文献   

8.
The aim of this paper is to study, from a mission analysis point of view, the performance of a hybrid propulsion concept for a two-dimensional transfer towards a planet of the Solar System. The propulsion system is obtained by combining a chemical thruster, used for the phases of Earth escape and/or target planet capture, with an electric sail, which provides a continuous thrust during the heliocentric transfer. Two possible mission scenarios are investigated: in the first case the sailcraft reaches the target planet with zero hyperbolic excess velocity, thus performing a classical rendezvous mission in a heliocentric framework. In the second mission scenario, a given final hyperbolic excess velocity relative to the planet is tolerated in order to decrease the mission flight time. The amount of final hyperbolic excess velocity is used as a simulation parameter for a tradeoff study in which the minimum flight time is related to the total velocity variation required by the chemical thruster to accomplish the mission, that is, for Earth escape and planetary capture.  相似文献   

9.
Melosh HJ 《Astrobiology》2003,3(1):207-215
It is now generally accepted that meteorite-size fragments of rock can be ejected from planetary bodies. Numerical studies of the orbital evolution of such planetary ejecta are consistent with the observed cosmic ray exposure times and infall rates of these meteorites. All of these numerical studies agree that a substantial fraction (up to one-third) of the ejecta from any planet in our Solar System is eventually thrown out of the Solar System during encounters with the giant planets Jupiter and Saturn. In this paper I examine the probability that such interstellar meteorites might be captured into a distant solar system and fall onto a terrestrial planet in that system within a given interval of time. The overall conclusion is that it is very unlikely that even a single meteorite originating on a terrestrial planet in our solar system has fallen onto a terrestrial planet in another stellar system, over the entire period of our Solar System's existence. Although viable microorganisms may be readily exchanged between planets in our solar system through the interplanetary transfer of meteoritic material, it seems that the origin of life on Earth must be sought within the confines of the Solar System, not abroad in the galaxy.  相似文献   

10.
Doughty CE  Wolf A 《Astrobiology》2010,10(9):869-879
Over the next two decades, NASA and ESA are planning a series of space-based observatories to find Earth-like planets and determine whether life exists on these planets. Previous studies have assessed the likelihood of detecting life through signs of biogenic gases in the atmosphere or a red edge. Biogenic gases and the red edge could be signs of either single-celled or multicellular life. In this study, we propose a technique with which to determine whether tree-like multicellular life exists on extrasolar planets. For multicellular photosynthetic organisms on Earth, competition for light and the need to transport water and nutrients has led to a tree-like body plan characterized by hierarchical branching networks. This design results in a distinct bidirectional reflectance distribution function (BRDF) that causes differing reflectance at different sun/view geometries. BRDF arises from the changing visibility of the shadows cast by objects, and the presence of tree-like structures is clearly distinguishable from flat ground with the same reflectance spectrum. We examined whether the BRDF could detect the existence of tree-like structures on an extrasolar planet by using changes in planetary albedo as a planet orbits its star. We used a semi-empirical BRDF model to simulate vegetation reflectance at different planetary phase angles and both simulated and real cloud cover to calculate disk and rotation-averaged planetary albedo for a vegetated and non-vegetated planet with abundant liquid water. We found that even if the entire planetary albedo were rendered to a single pixel, the rate of increase of albedo as a planet approaches full illumination would be comparatively greater on a vegetated planet than on a non-vegetated planet. Depending on how accurately planetary cloud cover can be resolved and the capabilities of the coronagraph to resolve exoplanets, this technique could theoretically detect tree-like multicellular life on exoplanets in 50 stellar systems.  相似文献   

11.
Lazutin  L. L. 《Cosmic Research》2004,42(5):535-540
The quasitrapping region (QTR) at the night side of a disturbed magnetosphere in the majority of models is either absent completely or merges with the plasma sheet of the magnetosphere tail. At the same time these two regions are different both in the topology of the magnetic field and in the character of motion of charged particles. Moreover, it is the region of quasitrapping that is conjugate to the zone of auroral active forms; i.e., it can be called the auroral magnetosphere. Models of the magnetosphere in which the tail structures of the magnetic field are directly adjacent to the boundary of stable trapping (in particular, the isotropic boundary model) are based on erroneous assumptions. Our understanding of the processes of magnetosphere substorms and magnetic storms depends on a correct understanding of the magnetosphere structure.  相似文献   

12.
The results of studying the interaction of two types of the solar wind (magnetic clouds and solar wind of extremely low density) with the Earth's magnetosphere are discussed. This study is based of the INTERBALL space project measurements and on the other ground-based and space observations. For moderate variations of the solar wind and interplanetary magnetic field (IMF) parameters, the response of the magnetosphere is similar to its response to similar changes in the absence of magnetic clouds and depends on a previous history of IMF variations. Extremely large density variations on the interplanetary shocks, and on leading and trailing edges of the clouds result in a strong deformation of the magnetosphere, in large-scale motion of the geomagnetic tail, and in the development of magnetic substorms and storms. The important consequences of these processes are: (1) the observation of regions of the magnetosphere and its boundaries at great distances from the average location; (2) density and temperature variations in the outer regions of the magnetosphere; (3) multiple crossings of geomagnetic tail boundaries by a satellite; and (4) bursty fluxes of electrons and ions in the magnetotail, auroral region, and the polar cap. Several polar activations and substorms can develop during a single magnetic cloud arrival; a greater number of these events are accompanied, as a rule, by the development of a stronger magnetic storm. A gradual, but very strong, decrease of the solar wind density on May 10–12, 1999, did not cause noticeable change of geomagnetic indices, though it resulted in considerable expansion of the magnetosphere.  相似文献   

13.
Titan, the largest satellite of Saturn, has a dense N2-CH4 atmosphere rich in organic compounds, both in gas and in aerosol phases. Its surface is probably covered by oceans of liquid methane-ethane mixtures, with many dissolved organics. This quasi planet appears as a natural laboratory to study chemical evolution toward complex organic systems in a planetary environment over a long time scale. With the Cassini-Huygens mission NASA and ESA will jointly send an orbiter (Cassini) around Saturn and a probe (Huygens) in the atmosphere of Titan. This mission, currently planned to be launched in 1996-1997 for a Saturn - Titan arrival in 2004, offers a unique opportunity to study in detail extra-terrestrial organic processes. Consequently, it has important implications in the field of exobiology and the origins of life.  相似文献   

14.
The spatial–temporal variations in aurora and VLF emissions during an weak intensification in the auroral zone morning sector on December 30, 2011, have been analyzed. The event was accompanied by a negative bay (~70 nT) in the X component of the magnetic field at ground stations in northern Scandinavia. At the recovery phase of this bay, the precipitation zone moved and VLF emission frequency simultaneously increased over ten minutes, which may indicate that waves and precipitating electrons had a common source. VLF noise bursts in the 600–1000 Hz band with a characteristic modulation scale of ~10 s and the corresponding aurora intensifications localized in the ~100 km region were observed during the following ten minutes, which also confirms that recorded waves are related to electron precipitation. This correspondence of the pulsating aurora periods and VLF noise modulation has been revealed for the first time. The role of VLF wave generation processes during the cyclotron interaction with electrons in the magnetosphere and the propagation of these waves from the magnetosphere to the observation point are discussed.  相似文献   

15.
Planning for the future exploration of the solar system has involved the structuring of a series of missions that address major scientific objectives at a minimum runout cost for the entire endeavor. In many cases, however, the optimal structuring of a program that would minimize the runout cost would entail an unacceptable high annual funding. Our actual planning must consider the planning wedge imposed on the National Aeronautics and Space Administration. It is vital that a plan be structured that copes with the annual restraint. If we do not recognize this, our plan will not be realized and a queing problem will result, thus negating all of our planning efforts.This paper presents ideas as to how planetary initiatives can be structured, wherein the peak annual funding is minimized. One vital aspect in the plan is to have a transportation capability that can launch a mission in any planetary opportunity. Solar electric propulsion can provide this capability. Another cost reduction approach would be to structure a mission set in a time sequenced fashion that could utilize essentially the same spacecraft for the implementation of several missions. This opportunity does exist. A third technique would be to fulfill a scientific objective in several sequential missions rather than attempt to accomplish all of the objectives with one mission. This approach might be applied to a mission currently in the planning stage designated the Saturn Orbiter Dual Probe mission. The current concept involves the delivery of a Saturn probe, a Titan probe, and a Saturn Orbiter by a one Shuttle launch. In this case, the orbiter must serve as a relay station for both probes; map the magnetosphere of Saturn; conduct a survey of Saturn's major satellites; and perform the planetological observation of Saturn itself. This mission entails the development of a complex spacecraft that would be required to have a fairly long life due to the extended mission operations at the benefit of accomplishing the mission with one launch. An alternate approach would be to break the mission into two separate elements. We could, for example, launch a Saturn orbiter carrying a Saturn entry probe. After serving as a communications relay system for the Saturn probe, the orbiter would then be specialized to map the magnetosphere of Saturn. A second launch would involve the delivery of a Titan probe by another orbiter where after delivery the orbiter would conduct the planetological observation of Saturn and its satellites. For the split-launch option, the runout cost for the two missions would be greater than the single launch option. However, optimum structuring of the two missions could materially reduce the peak annual funding.This paper presents data on the estimated cost on a year by year basis of a mission set structured to minimize the runout cost with no concern as to the peak annual funding as compared to a mission set that would yield the same scientific objectives in a slightly longer time span wherein the annual peak funding would be minimized. The consequences of this revised plan are analyzed.  相似文献   

16.
Results of the analysis of specific features of solar activity, dynamics of solar cosmic ray fluxes, and state of the interplanetary medium are presented for the period December 5–18, 2006. The data analysis is based on new model concepts on coronal and interplanetary propagation of solar cosmic rays: partial capture into the magnetic field traps and oscillations at reflections from magnetic mirrors. Some new hypotheses about possible relations of the features of the interplanetary medium with processes in the Earth’s magnetosphere are put forward: the influence of the discrete interplanetary medium on processes in the Earth’s magnetosphere does exist always and, in this sense, it is a fundamental phenomenon; the discreteness of the inter-planetary medium can be one of the causes of geomagnetic substorms.  相似文献   

17.
We discuss the possibility of Earth-type planets in the planetary system of 55 Cancri, a nearby G8 V star, which is host to two, possibly three, giant planets. We argue that Earth-type planets around 55 Cancri are in principle possible. Several conditions are necessary. First, Earth-type planets must have formed despite the existence of the close-in giant planet(s). In addition, they must be orbitally stable in the region of habitability considering that the stellar habitable zone is relatively close to the star compared to the Sun because of 55 Cancri's low luminosity and may therefore be affected by the close-in giant planet(s). We estimate the likelihood of Earth-type planets around 55 Cancri based on the integrated system approach previously considered, which provides a way of assessing the long-term possibility of photosynthetic biomass production under geodynamic conditions.  相似文献   

18.
Several types of numerical models are used to analyze the interactions of the solar wind flow with Mercury’s magnetosphere, including kinetic models that determine magnetic and electric fields based on the spatial distribution of charges and currents, magnetohydrodynamic models that describe plasma as a conductive liquid, and hybrid models that describe ions kinetically in collisionless mode and represent electrons as a massless neutralizing liquid. The structure of resulting solutions is determined not only by the chosen set of equations that govern the behavior of plasma, but also by the initial and boundary conditions; i.e., their effects are not limited to the amount of computational work required to achieve a quasi-stationary solution. In this work, we have proposed using the magnetic field computed by the paraboloid model of Mercury’s magnetosphere as the initial condition for subsequent hybrid modeling. The results of the model have been compared to measurements performed by the Messenger spacecraft during a single crossing of the magnetosheath and the magnetosphere. The selected orbit lies in the terminator plane, which allows us to observe two crossings of the bow shock and the magnetopause. In our calculations, we have defined the initial parameters of the global magnetospheric current systems in a way that allows us to minimize paraboloid magnetic field deviation along the trajectory of the Messenger from the experimental data. We have shown that the optimal initial field parameters include setting the penetration of a partial interplanetary magnetic field into the magnetosphere with a penetration coefficient of 0.2.  相似文献   

19.
On the base of the laser altimetry results obtained using the orbital altimeter MOLA (the MGS mission) and the data of radio occultation experiments of transionospheric sounding of the Mars ionosphere, a method for interpretation of the planet radar sounding data is developed. The proposed method includes a program package for numerical simulation of the process of radiowave propagation through the media under study.  相似文献   

20.
The water content and habitability of terrestrial planets are determined during their final assembly, from perhaps 100 1,000-km "planetary embryos " and a swarm of billions of 1-10-km "planetesimals. " During this process, we assume that water-rich material is accreted by terrestrial planets via impacts of water-rich bodies that originate in the outer asteroid region. We present analysis of water delivery and planetary habitability in five high-resolution simulations containing about 10 times more particles than in previous simulations. These simulations formed 15 terrestrial planets from 0.4 to 2.6 Earth masses, including five planets in the habitable zone. Every planet from each simulation accreted at least the Earth's current water budget; most accreted several times that amount (assuming no impact depletion). Each planet accreted at least five water-rich embryos and planetesimals from the past 2.5 astronomical units; most accreted 10-20 water-rich bodies. We present a new model for water delivery to terrestrial planets in dynamically calm systems, with low-eccentricity or low-mass giant planets-such systems may be very common in the Galaxy. We suggest that water is accreted in comparable amounts from a few planetary embryos in a " hit or miss " way and from millions of planetesimals in a statistically robust process. Variations in water content are likely to be caused by fluctuations in the number of water-rich embryos accreted, as well as from systematic effects, such as planetary mass and location, and giant planet properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号