首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Microgravity Research Program (MRP) participated aggressively in Phase 1 of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges of long duration microgravity space research. Payloads with both National Aeronautics and Space Agency (NASA) and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about long-duration on-orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program.

This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings.  相似文献   


2.
The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families.  相似文献   

3.
Doetsch K 《Acta Astronautica》2005,57(2-8):661-675
The paper addresses the evolution of the Canadian Space Station Program between 1981 and 2003. Discussions with potential international partners, aimed at jointly developing the current International Space Station program, were initiated by NASA in 1982. Canada chose, through the further development of the technologies of Canadarm on the space shuttle, to provide and operate an advanced and comprehensive external robotics system for space station, and to use the space station for scientific and commercial purposes. The program was to become a corner-stone of the new Canadian Space Agency. The development phase of the Canadian Space Station Program has been completed and two of the three major elements are currently operational in space.  相似文献   

4.
Issues about commercialization of space have been a growing concern in the past decade for the space community. This paper focuses on the work from a team of 51 students attending the Summer Session Program of the International Space University in Bremen, Germany. CASH 2021 (Commercial Access and Space Habitation) documents a plan that identifies commercial opportunities for space utilization that will extend human presence in space, and will chart the way forward for the next 20 years. The group selected four commercial sectors that show the most promise for the future: tourism, entertainment, space system service, assembly and debris removal, and research and development/production. The content of this document presents the results of their research. Historical activities in each of the commercial sectors are reviewed along with the current market situation. To provide a coherent background for future commercialization possibilities a scenario has been developed. This scenario includes a postulated upon ideal future and includes social, political and economic factors that may affect the space industry over the timeline of the study. The study also presents a roadmap, within the limited optimistic scenario developed, for the successful commercialization of space leading to future human presence in space. A broad range of commercially viable opportunities, not only within the current limits of the International Space Station, but also among the many new developments that are expected by 2021 are discussed.  相似文献   

5.
Through the active transfer of technology, the National Aeronautics and Space Administration (NASA) Technology Utilization (TU) Program assists private companies, associations, and government agencies to make effective use of NASA's technological resources to improve U.S. economic competitiveness and to provide societal benefit. Aerospace technology from areas such as digital image processing, space medicine and biology, microelectronics, optics and electrooptics, and ultrasonic imaging have found many secondary applications in medicine. Examples of technology spinoffs are briefly discussed to illustrate the benefits realized through adaptation of aerospace technology to solve health care problems. Successful implementation of new technologies increasingly requires the collaboration of industry, universities, and government, and the TU Program serves as the liaison to establish such collaborations with NASA. NASA technology is an important resource to support the development of new medical products and techniques that will further advance the quality of health care available in the U.S. and worldwide.  相似文献   

6.
Private and commercial activity in outer space still poses challenges to space law and policy. Within ‘Project 2001’—a legal research project by the University of Cologne's Institute of Air and Space Law and the German Aerospace Center (DLR)—six international expert working groups examined international and national laws, in order to identify gaps and, where necessary, propose improvements to the present legal framework for private space activities. The results were presented and discussed at an international colloquium in May 2001 in Cologne, Germany, where final conclusions have been drawn. This report presents a summary of the project's work and main conclusions, which are documented in full in a comprehensive book to be published in May 2002.  相似文献   

7.
Chad Anderson 《Space Policy》2013,29(4):266-271
On May 24, 2012 SpaceX's Dragon capsule was launched and in doing so became the first commercially built vehicle to berth with and carry cargo to the International Space Station (ISS). It successfully completed its mission and returned to the Pacific Ocean on May 31, 2012.1 The docking of Dragon represented a historic moment where a commercial enterprise managed to achieve that which had previously only been accomplished by governments. “In the history of spaceflight – only four entities have launched a space capsule into orbit and successfully brought it back to Earth: the United States, Russia, China, and SpaceX”.2 While this is a monumental accomplishment for private industry, we cannot ignore the value of public–private partnerships and the role that government played in enabling this incredible achievement.In this paper I will examine how public–private partnerships are enabling the development of the commercial space industry, viewed through the lens of the Rethinking Business Institutional Hybrid Framework put forward by University of Oxford professors Marc Ventresca and Alex Nichols in their Rethinking Business MBA course. I intend to demonstrate that the NASA versus Commercial Space argument is a false dichotomy and that only by working together can both sectors continue to push the boundaries of space travel and exploration. I plan to do this by first discussing how the NASA-SpaceX partnership came about and the reasoning behind it. I will then explore what a public–private partnership (PPP) is, as compared to other government privatization schemes, and explain why Space Act Agreements are significantly different from anything done previously. I will then analyze the impact of these agreements and outline their benefits in order to demonstrate the value they create, especially in areas of mutual value creation and economic development.  相似文献   

8.
Space Phoenix     
《Space Policy》1988,4(2):143-150
The US federal government is collaborating with a non-profit university consortium and its commercial project managers to develop the Space Shuttle fleet's expended external fuel tanks for scientific and commercial uses in space. Nearly a half dozen years in evolution, the Space Phoenix Program is a private-sector civil space programme with the long-term goal of opening the Earth's space to as many people, organizations and activities as possible, as soon as possible, and at the lowest cost to them as possible. In time it is expected to be a major focus for private-sector activities in space. This report describes how it will work.  相似文献   

9.
The National Space Biomedical Research Institute (NSBRI) is supporting the National Aeronautics and Space Administration's (NASA) education mission through a comprehensive Education and Public Outreach Program (EPOP) that communicates the excitement and significance of space biology to schools, families, and lay audiences. The EPOP is comprised of eight academic institutions: Baylor College of Medicine, Massachusetts Institute of Technology, Morehouse School of Medicine, Mount Sinai School of Medicine, Texas A&M University, University of Texas Medical Branch Galveston, Rice University, and the University of Washington. This paper describes the programs and products created by the EPOP to promote space life science education in schools and among the general public. To date, these activities have reached thousands of teachers and students around the US and have been rated very highly.  相似文献   

10.
The Special Purpose Dexterous Manipulator (SPDM) is the latest Space Robot developed by the Canadian Space Agency (CSA) and McDonald Detwiller Space and Advanced Robotics (MD Robotics, previously Spar Aerospace) for the International Space Station (ISS). The SPDM has presented its designers with a number of new challenges in performing the Systems Engineering effort required for a complex robotic system:(1) The SPDM initial design was started and attained various levels of maturity for various components under the Space Station Freedom environment, then the Program was stopped and finally restarted under the harsher environment in which the International Space Station is being built.(2) The SPDM is the first space robot to utilize previously developed and space certified robotic components, as well as components with high-commonality to the previously developed ones (electronics, S/W).(3) New requirements levied by the Customer during the negotiations leading to the Program re-start necessitated significant architectural changes versus the SPDM configuration `frozen' when the Program was shut down.(4) The SPDM is the first robotic system of this complexity that is being built under a Firm Fixed Price contract, with the commonality assumptions as one of the cost drivers.This combination of components of various pedigree, coupled with the constraints imposed by an FFP contract have been addressed by the designers through the definition of a novel approach to integrated Systems and Design Engineering.  相似文献   

11.
Space Exploration educators worldwide are confronting challenges and embracing opportunities to prepare students for the global 21st century workforce. The National Space Biomedical Research Institute (NSBRI), established in 1997 through a NASA competition, is a 12-university consortium dedicated to space life science research and education. NSBRI's Education and Public Outreach Program (EPOP) is advancing the Institute's mission by responding to global educational challenges through activities that: provide teacher professional development; develop curricula that teach students to communicate with their peers across the globe; provide women and minority US populations with greater access to, and awareness of science careers; and promote international science education partnerships.A recent National Research Council (NRC) Space Studies Board Report, America's Future in Space: Aligning the Civil Program with National Needs, acknowledges that “a capable workforce for the 21st century is a key strategic objective for the US space program… (and that) US problems requiring best efforts to understand and resolve…are global in nature and must be addressed through mutual worldwide action”. [1] This sentiment has gained new momentum through a recent National Aeronautics and Space Administration (NASA) report, which recommends that the life of the International Space Station be extended beyond the planned 2016 termination. [2] The two principles of globalization and ISS utility have elevated NSBRI EPOP efforts to design and disseminate science, technology, engineering and mathematics (STEM) educational materials that prepare students for full participation in a globalized, high technology society; promote and provide teacher professional development; create research opportunities for women and underserved populations; and build international educational partnerships.This paper describes select EPOP projects and makes the case for using innovative, emerging information technologies to transfer space exploration knowledge to students, engage educators from across the globe in discourse about science curricula, and foster multimedia collaborations that inform citizens about the benefits of space exploration for life on Earth. Special references are made to educational activities conducted at professional meetings in Austria, Canada, France, China, Greece, Italy, Russia, Scotland and Spain.  相似文献   

12.
In February 1997 the Chief of Naval Research chartered the Naval Space Science and Technology (S&T) Program Office, at the Office of Naval Research, to operate as the central point of contact for the Department of the Navy's (DON's) S&T activities in space. The Office was chartered to enhance the DON's space efforts through interdepartmental integration and linkage with external Department of Defense (DOD) commands and government agencies. The Office's goal is to optimize a plan for S&T coherency, synergy, and relevancy to effect technology transition to the DON's Systems Commands or Program Executive Offices (PEO's) while developing an investment strategy that accommodates and leverages the commonality of commercial and consumer thrust areas and products.

This paper will focus on the “Flagship” Naval Space S&T Program, the Naval EarthMap Observer (NEMO) Program, as one example of how the Office is executing its mission. It will discuss how, through NEMO, the Navy is able to leverage commercial industry and other US government agency requirements and resources to meet unique Naval needs. Finally, the paper will discuss the specifics of NEMO, the Navy's roles and responsibilities and how the Navy will use NEMO in its mission to characterize the littoral regions of the world.

Through the NEMO satellite system, the Navy will develop a large hyperspectral imagery database which will be used to characterize and model the littoral regions of the world. NEMO will provide images using its Coastal Ocean Imaging Spectrometer (COIS) Instrument along with a co-registered 5m Panchromatic Imager (PIC). With 210 spectral channels over a bandpass of 0.4 to 2.5μm and very high signal-to-noise ratio (SNR), the COIS instrument is optimized for the low reflectance environment of the littoral region. COIS will image over a 30km wide swath with a 60m Ground Sample Distance (GSD), and can image at a 30m GSD with ground motion compensation. A 10:30am, sun-synchronous circular orbit of 605km enables continuous repeat coverage of the whole earth. A unique aspect of the system is the spectral feature extraction and data compression software algorithm developed by the Naval Research Laboratory (NRL) called the Optical Real-Time Spectral Identification System (ORA-SIS). ORASIS employs a parallel, adaptive hyperspectral method for real-time scene characterization, data reduction, background suppression, and target recognition. The use of ORASIS is essential for management of the massive amounts of data expected from the NEMO HSI system, and for development of Naval products. Specific Naval products include bathymetry, water clarity, bottom type, atmospheric visibility, bioluminescence, beach characterization, under-water hazards, total column atmospheric water vapor, and detection and mapping of sub-visible cirrus. Demonstrations of timely downlinks of real-time hyperspectral imagery data to the Naval warfighter are also being developed. The NEMO satellite is planned for launch in mid-2000 followed by an operational period of 3 to 5 years.  相似文献   


13.
This article provides an overview of NASA's plans to encourage commercial use of the International Space Station (ISS). It examines the reasons driving such commercialization and highlights those private companies currently most interested in undertaking profit-making operations on the station, as well as discussing those activities most likely to be seen as commercial possibilities. The steps NASA is taking to stimulate private interest are enumerated. Various unresolved issues are raised, such as the legal issues associated with commercial research, charging policy for in-orbit operations and ‘metering’ of in-orbit resources. It is noted that the international dimension of the ISS has thus far received little consideration in the USA.  相似文献   

14.
Nearly six years after the launch of the first International Space Station element, and four years after its initial occupation, the United States and our 6 international partners have made great strides in operating this impressive Earth orbiting research facility. This past year we have done so in the face of the adversity of operating without the benefit of the Space Shuttle. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush affirmed the United States' commitment to completing construction of the International Space Station by 2010. The President also stated that we would focus our future research aboard the Station on the long-term effects of space travel on human biology. This research will help enable human crews to venture through the vast voids of space for months at a time. In addition, ISS affords a unique opportunity to serve as an engineering test bed for hardware and operations critical to the exploration tasks. NASA looks forward to working with our partners on International Space Station research that will help open up new pathways for future exploration and discovery beyond low Earth orbit. This paper provides an overview of the International Space Station Program focusing on a review of the events of the past year, as well as plans for next year and the future.  相似文献   

15.
In 2009 President Obama proposed a budget for the National Aeronautics and Space Administration (NASA) that canceled the Constellation program and included the development of commercial crew transportation systems into low Earth orbit. This significant move to shift human spaceflight into the private sector sparked political debate, but much of the discourse has focused on impacts to “safety.” Although no one disputes the importance of keeping astronauts safe, strategies for defining safety reveal contrasting visions for the space program and opposing values regarding the privatization of U.S. space exploration. In other words, the debate over commercial control has largely become encoded in arguments over safety. Specifically, proponents of using commercial options for transporting astronauts to the International Space Station (ISS) argue that commercial vehicles would be safe for astronauts, while proponents of NASA control argue that commercial vehicles would be unsafe, or at least not as safe as NASA vehicles. The cost of the spaceflight program, the technical requirements for designing a vehicle, the track record of the launch vehicle, and the experience of the launch provider are all incorporated into what defines safety in human spaceflight. This paper analyzes these contested criteria through conceptual lenses provided by fields of science and technology policy (STP) and science, technology, and society (STS). We ultimately contend that these differences in definition result not merely from ambiguous understandings of safety, but from intentional and strategic choices guided by normative positions on the commercialization of human spaceflight. The debate over safety is better considered a proxy debate for the partisan preferences embedded within the dispute over public or private spaceflight.  相似文献   

16.
Below is a summary of what was to be the first in a series of reports produced by the Office of Technology Assessment (now defunct) on policy for the USA's future space transportation technology and industrial base. It examines the Clinton Administration's 1994 National Space Transportation Policy and supporting implementation plans and raises and analyses such issues as conflicts and redundancies within NASA and DoD space transportation development programs; competition and cooperation with foreign launch vehicle and component providers; US government limits on the conversion of long-range missiles to space launchers in the face of Russian activity in this area; and the effectiveness of Administration efforts to include the private sector in space transportation decision making. Some issues not covered in the Policy are also discussed.  相似文献   

17.
《Acta Astronautica》2001,48(5-12):921-950
Government space agencies have the statutory responsibility to suport the commercialisation of space activities. NASA's 1998 report “General Public Space Travel and Tourism” concluded that passenger space travel can start using already existing technology, and is likely to grow into the largest commercial activity in space: it is therefore greatly in taxpayers' economic interest that passenger space travel and accommodation industries should be developed. However, space agencies are doing nothing to help realise this — indeed, they are actively delaying it. This behaviour is predicted by ‘public choice’ economics, pioneered by Professors George Stigler and James Buchanan who received the 1982 and 1986 Nobel prizes for Economics, which views government organisations as primarily self-interested. The paper uses this viewpoint to discuss public and private roles in the coming development of a space tourism industry.  相似文献   

18.
A series of major accidents - the explosion of the Space Shuttle Challenger, the destruction of Titan and Delta launchers, and failures of the Ariane rocket series - has led to a reexamination of Western space programmes. In the short term, all satellite launches have been delayed. This is not an insurmountable obstacle, although it will inevitably delay the first space-based tests of SDI hardware. The author outlines the growing gap between the immediate needs of organizations which launch satellites and the more uncertain ambitions of the ‘conquerors’ of space. The former are now bearing the costs of the latter, who are aiming at manned space flights and a human presence in space. In the longer term, these objectives have justifications other than simple industrial and commercial logic. The author suggests that an attempt should be made to reconcile immediate military and industrial needs with the human desire to overcome the ‘Icarus complex’ in the long-term future.  相似文献   

19.
Space is now a global business, yet the cost of getting to space is still high. Developing new launch vehicles that are cheaper, safer, and more reliable is the key to both rapid commercial growth and to more and better government uses of space. However, the R&D process leading to new launch vehicles is expensive and technically challenging; the past 50 years have seen many government development programs, but no major technological breakthroughs. Perhaps, it is therefore time to think about other ways of developing new launch vehicles. The best expertise in this field resides primarily with private companies and is spread across many actors and nations. A consortium led by space firms might be a better approach to opening up space in the 21st century. Governments will have to develop new policies treating space as though it were a commercial industry, in particular, relaxing export trade restrictions wherever possible. Issues of dual-use may be outweighed by the rapidly growing widespread availability of launch capabilities. Since new launch vehicles will require large up-front R&D expenditures, government support will continue to be needed to supplement private capital funds. Contributions to this effort should be international. However, difficult it might be in today's security conscious environment to reorient government policy, doing so may offer the most efficient and successful way to break the technological and economic barriers to more reliable access to space.  相似文献   

20.
At a time when scientific and commercial interest in the Moon is being reinvigorated it is becoming fashionable for ordinary individuals to ‘buy’ plots on the lunar surface, with the ‘vendors’ arguing that an absence of specific prohibition of individual private activity in space makes such action legal. It is therefore time for the legal community to address this situation by investigating just how legal such activity is—and bringing their findings to the attention of governments. This can be done through an examination of the relationship between national law and international space law, of the provisions of international space law—especially Article 2 of the Outer Space Treaty—and by answering any claims to private ownership of immovable property. Aside from the fact that individuals appear to be being duped, the pursuit of property claims on the Moon could impede future activities aimed at benefiting society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号