首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
盛佳明  张海灯  吴云  唐孟潇  高丽敏 《推进技术》2020,41(10):2228-2236
为研究电弧放电等离子体激励对超声速压气机叶栅激波/边界层干扰的控制作用,建立了模拟等离子体激励作用效果的唯象学模型,进一步以ARL-SL19超声速叶栅为对象,通过数值仿真研究了电弧放电等离子体与叶栅通道内部流动的相互作用及其对叶栅流动损失的影响。结果表明:等离子体唯象学模型能够较好模拟电弧放电等离子体诱导产生冲击波的气动特性。电弧放电等离子体激励对叶栅通道内部流动主要具有三种作用效果:在放电区,注入的热量会产生阻塞效应,增加近壁面气流的流动损失;在激波/边界层相互作用区,能够改变激波系结构,减小激波损失;在尾迹区,冲击波会诱导产生脱落涡。  相似文献   

2.
超声速压气机叶栅前缘通道激波损失的鼓包控制研究   总被引:1,自引:0,他引:1  
为了有效减小超声速压气机叶栅变进气马赫数条件下的前缘通道激波损失及由激波诱导的边界层分离,提出了一种带有平直过渡区的新型鼓包结构,并采用数值方法详细分析了新型鼓包结构对激波与激波/边界层相互作用机理以及鼓包几何尺寸与位置对控制效果的影响机制。研究结果表明:新型鼓包在迎风侧凹面产生的压缩波系有效削弱了前缘通道激波的强度,鼓包过渡区产生的膨胀波系使边界层流体加速,明显抑制了局部流动分离,并使分离提前再附。当某一超声速压气机叶栅的前缘通道激波入射在鼓包的过渡区范围内,鼓包高度为0.35倍的边界层厚度且鼓包迎风侧与背风侧长度分别为过渡区长度4倍与5倍时,可以实现较好的控制效果。此外,与无鼓包方案相比,新型鼓包结构可使超声压气机叶栅在设计工况下的总压损失减少4.6%,同时超声速压气机叶栅进气马赫数在1.65~1.8范围内仍能取得较好的气动减损效果。   相似文献   

3.
跨音压气机叶栅的激波结构模型及损失   总被引:1,自引:0,他引:1  
在分析讨论激波与附面层相互作用和栅后背压引起激波形状及强度变化的基础上, 给出了考虑激波/附面层相互作用及栅后背压的跨音叶栅激波结构的物理数学模型。应用本文所提出的模型分析了跨音叶栅的激波损失, 其结果和实验结果一致。激波损失的精确得出, 使得将激波与附面层相互作用所引起的流动分离损失从流动总损失中分离出来成为可能, 有助于了解激波与附面层相互作用引起流动分离的机理。   相似文献   

4.
余申 《航空学报》1982,3(1):45-49
压气机叶栅中激波附面层相互作用是十分复杂的问题,由于相互作用引起分离是决定跨音速压气机性能的重要因素之一。然而迄今为止,尚未深入进行过压气机叶栅激波附面层相互作用的研究,发表的文献极少。作者经过计算和分析,说明压气机叶栅流中主要的相互作用形式是叶栅槽道中激波和湍流附面层的相互作用。作者通过分析指出,研究压气机叶栅激波附面层相互作用,不能直接应用Pearcey分离准则。作者并提出了适用于压气机叶栅的分离准则的函数关系为f(M_1,p_1/p_(L.E.),P_(r.E.)/p_2,Re_0)=O。  相似文献   

5.
张扬军  陶德平  周盛 《航空学报》1995,16(1):105-109
在低展弦比、低轮毂比的轴流压气机中激波结构常常是三维的。叶尖区域的三维激波损失在整个流场的激波损失中占有十分重要的比例。Wennerstrom和Puterbaugh于1984年推出的三维激波损失模型忽略了激波在叶尖区域的流动结构。通过分析叶尖区域的激波结构及其与机匣附面层流动的相互作用,提出了考虑叶尖区域激波与附面层相互作用所引起的激波结构及强度变化的跨音叶栅三维激波损失的改进模型,应用改进模型计算得出的结果和实验结果符合的很好。  相似文献   

6.
跨声速压气机性能计算中的激波损失模型   总被引:1,自引:0,他引:1  
在分析了跨声速叶型内激波与附面层相互作用及波系形状的基础上,建立了一种考虑了激波与附面层的相互作用及栅内流动状况的跨声速叶栅激波结构的数学物理模型,并提供了一种可靠评估跨声速叶栅激波损失的方法。  相似文献   

7.
李清华  曹志远  胡骏 《推进技术》2019,40(9):1991-2002
附面层吸/吹气是抑制流动分离、提高压气机叶片负荷的有效技术途径。针对超声速压气机叶栅内激波诱导的角区分离,分别采用多种不同的端壁吸/吹气方案对其进行流动控制,旨在探索端壁吸/吹气对激波干涉下角区分离的控制机理,并对比分析端壁吸/吹气对超声速压气机叶栅角区分离的控制效果。结果表明:在激波/端壁附面层干涉下,该超声速压气机叶栅内存在大范围的激波诱导角区分离,角区分离使得该超声速叶栅存在强三维效应,二维叶栅中的单正激波变为"斜激波+正激波"结构,叶中吸力面尾缘开式分离变为闭式分离;端壁吸气可有效抑制该超声速叶栅的角区分离,吸气后近端壁区损失系数大幅降低,最优端壁吸气缝方案的起始点与亚声速压气机叶栅相同,但端壁吸气后叶中的双激波结构变为单正激波结构,叶中流动分离增大;端壁吹气也可有效抑制角区分离,其控制效果略优于端壁吸气,其原因是吹气缝处的静压高于吸气缝,对激波的增强作用弱于端壁吸气;与端壁吸气方案不同的是,最优端壁吹气缝方案的起始点位于叶片前缘。  相似文献   

8.
为进一步揭示超声速流动条件下压气机叶排干扰机理,提高对跨/超声速压气机流动的认识,基于课题组自主研发RANS方程解算器,运用非定常数值模拟的方法对超声速压气机静/转叶栅级间干涉进行研究。研究结果表明,超声速压气机静/转叶栅通道中存在较为复杂的相互干涉,下游转子叶栅外伸激波被上游静子叶栅切割,并强烈扰动静子叶栅通道中的流动,造成静子叶片表面压力波动较大;静子叶栅尾迹区存在较强的熵增,在向下游传播的过程中被转子叶栅切割,在转子叶栅通道中,尾迹区域变形并向压力面靠拢,最终与转子叶栅尾迹相互作用,使得转子叶栅尾迹呈类卡门涡街形式脱落。  相似文献   

9.
在马赫数2.5来流条件下,开展了高频微秒脉冲放电控制压缩折角激波/边界层干扰非定常性的风洞实验,放电位于压缩折角上游沿流向布局的6对电极之间,所选取的放电频率为14 kHz,接近于来流边界层的特征频率。采用高速纹影成像技术记录流场的动态变化,并基于纹影图像灰度值的时间序列采用平均、均方根、本征正交分解、动态模态分解、傅里叶变换等方法进行处理,对比研究有/无控制情形下激波/边界层干扰的非定常特性。研究发现,对于无控情形的基准流场,流动的低频特性表现为分离激波的振荡及边界层大尺度涡经过激波的脱落行为,中、高频特性表现为边界层小尺度涡与激波的相互作用;对于受控情形,来流边界层内的大涡尺度在放电作用下增大,大尺度涡与分离激波相互作用使得激波的振荡转变为稀疏压缩波的脉动,流经激波的边界层脉动更强,分离激波的低频振荡(10~300 Hz)有所改善。此时,流动的低频特性主要表现为边界层大尺度涡经过激波的脱落行为,而中、高频特性与基准流场相似。  相似文献   

10.
高马赫数超声压气机转子叶型优化设计   总被引:1,自引:0,他引:1       下载免费PDF全文
邱名  马率  周正贵  张传海  王子维 《推进技术》2016,37(10):1826-1838
为进一步提高压气机叶尖轮缘速度和增压比,将唯一进气角原理和数值最优化技术用于叶型设计,获得两个高马赫数、高压比、低损失的“S”形超声压气机叶型。首先根据压气机流动机理,提出超声压气机叶栅的性能指标;然后通过吸力面叠加厚度的方式生成初始叶型,保证叶栅的来流马赫数和唯一进气角;最后采用基于修改量的叶型参数化方法,以给定总压比为约束条件,以总压损失系数最小为目标对初始叶型优化。设计结果表明:在设计点,叶栅1和叶栅2的总压损失系数分别为0.119和0.158;在高来流马赫数条件下,超声叶栅需采用大稠度设计才能实现多道斜激波加一道正激波增压;在叶型吸力面前端构造一个斜坡也可增加叶栅通道内的斜激波数量;平直的吸力面后段有利于削弱激波对附面层干扰,将平直吸力面后段与钝尾缘(或翘尾缘)相结合可有效抑制附面层分离,减小尾迹区。  相似文献   

11.
郝颜  邱名  江雄  王子维 《推进技术》2017,38(12):2725-2733
进口预旋对改善叶间匹配、提高压气机效率和抗畸变能力有着重要影响。基于课题组自主研发的RANS方程解算器,以ARL-SL19,SM-1.5预压缩叶栅为研究对象,采用数值模拟和理论分析相结合的方式探讨进口预旋对预压缩叶栅的性能影响。结果表明:叶栅进口引入正预旋,叶栅流动处于溢流状态,来流相对马赫数由1.50降为1.43,叶栅前缘脱体激波表现为一道槽道正激波和一道向远上游延伸的外伸激波,此时叶栅流动损失较大;叶栅进口引入负预旋,叶栅流动始终处于起动状态,随着进口负预旋的增大,来流相对马赫数增加,叶栅流动损失增大。无论进口处存在正预旋还是负预旋,叶栅流动始终遵循唯一进气角原理;当预压缩超声速叶栅处于溢流状态时,可通过减小正预旋或引入进口负预旋的方式使其起动。  相似文献   

12.
跨、超声速吸附式压气机平面叶栅试验   总被引:2,自引:2,他引:0  
对跨、超声速吸附式压气机平面叶栅进行了试验研究,试验针对若干抽气位置、抽气量和流动条件不同的叶栅工作状态进行,结果表明:一般在通道激波后、附面层分离前抽气对控制叶片附面层在逆压力梯度区的发展、抑制分离、降低叶栅损失、升叶栅气动性能有较明显的效果;在跨声速叶栅中,抽气量大于某个时抽气才能起到减小损失、改善性能的作用.   相似文献   

13.
开展了跨声速涡轮平面叶栅吹风实验,采用纹影技术捕捉静叶尾缘的激波现象并测量了流道中总压和静压分布。基于CFX软件,采用与实验相同的边界条件对实验叶栅进行了数值模拟分析,获得了流场分布、激波损失分布、激波/尾迹和边界层干扰分布等。综合实验与数值模拟结果,分析了叶片表面静压分布特点、叶栅出口周向总压分布特点及叶栅能量损失系数与出口马赫数的关系,发现激波损失在气动损失中占有很大比重。为了削弱激波强度以降低激波损失,通过控制叶型,使压力面负荷向尾缘移动,由此使得叶栅总压恢复系数增大0.003 6,能量损失系数降低0.185 8,总体激波损失减弱。  相似文献   

14.
高超声压气机叶栅因适用于战斗机高马赫数飞行、增压比高而成为研究热点,但其损失难以控制,波系结构复杂,激波附面层干扰结果难以预测。基于自开发NUAA程序,对超声压气机平面叶栅流场进行计算分析,并通过与超声压气机平面叶栅试验结果的对比,考察叶栅在不同进口马赫数与气流攻角下的总性能、波系结构与激波位置。结果表明:程序计算的总性能与试验值吻合很好,且能精确捕捉超声叶栅中的激波结构,较好预测叶片表面等熵马赫数分布,可为超声叶栅的设计与结果验证提供支持。  相似文献   

15.
高负荷扩压叶栅边界层容易发生流动分离.采用吹吸气相结合的流动控制方法可以有效控制分离并且提高扩压叶栅的性能.影响吹吸气流动控制效果的因素有很多,包括吹吸气位置.吹吸气流量以及吹吸气槽宽度等.通过研究某一大弯折角低稠度扩压叶栅在不同位置处吹气的数值模拟.发现从3%至17%弦长不同位置处吹气均能有效控制叶栅中的边界层分离,提高叶栅总体性能;计算还表明在原型叶型吸力面产生激波处吹气可以达到最好的控制效果,叶栅总压损失系数可降至原型的12%以内.  相似文献   

16.
针对跨声速平面叶栅中气膜冷却对流场的影响,采用数值模拟的方法,分析了激波和边界层的相互作用及引入气膜冷却之后三者之间的影响。结果表明,由于激波形成的逆压力梯度导致边界层出现分离现象,在引入冷却射流以后被部分抑制,流场细节显示在原分离处新形成了两个方向相反的分离旋涡。保持冷却条件不变,随着孔间距的减小,边界层分离现象被抑制的效果更加明显,平面叶栅热力损失系数逐渐减小。当孔径和孔间距之比达到0.67时,相对于没有引入气膜冷却的情况,热力损失系数降低了13%。冷气流量对射流和主流相互作用流场影响显著,冷气出口局部超声速区域显著增大流场损失,降低冷却效果。  相似文献   

17.
跨声速叶栅抽吸流、激波以及分离流相干效应   总被引:3,自引:3,他引:0  
王掩刚  任思源  牛楠  刘波 《推进技术》2011,32(5):664-669
以某高负荷、跨声速压气机叶栅为研究对象,应用数值模拟手段探讨通过抽吸控制激波从而控制附面层发展的可行方法。研究结果表明:随着抽吸量的增加吸力面马赫数峰值提高,激波损失增加,同时使得吸力面马赫数峰值点位置后移,附面层分离减弱,分离的减弱所导致的总压恢复系数增加量要远大于激波强度增加所导致的总压恢复系数减小量;抽吸对叶栅性能改善存在一个最佳抽吸量1.2%;在保证叶栅静压压升不变的前提下,相对于未抽吸条件1.2%抽吸使得叶栅总压恢复系数提高10%,扩散因子降低18%,落后角减小5°;通道激波后实施附面层小流量抽吸不能有效改善附面层内部流动参数,当实现前缘入射斜激波投射点位于通道激波上游时,叶表附面层流动得到较大改善。  相似文献   

18.
对超声压气机叶栅的多攻角工况进行试验,利用纹影仪、油流试验及叶片表面等熵马赫数分布结果进行对比分析,观察到大攻角范围下叶栅激波波系结构发生了明显变化。为揭示激波结构变化原因,利用NUAA计算程序对叶栅进行仿真。研究发现,大攻角状态下叶栅通道中斜激波产生的原因,为前通道激波诱发附面层分离再附后,气流为沿叶片表面继续流动,从而形成斜激波;由于斜激波的增压降速,导致尾缘激波非常微弱甚至消失。  相似文献   

19.
对超声压气机叶栅的多攻角工况进行试验,利用纹影仪、油流试验及叶片表面等熵马赫数分布结果进行对比分析,观察到大攻角范围下叶栅激波波系结构发生了明显变化。为揭示激波结构变化原因,利用NUAA计算程序对叶栅进行仿真。研究发现,大攻角状态下叶栅通道中斜激波产生的原因,为前通道激波诱发附面层分离再附后,气流为沿叶片表面继续流动,从而形成斜激波;由于斜激波的增压降速,导致尾缘激波非常微弱甚至消失。  相似文献   

20.
吸附式跨声速压气机叶栅流场数值模拟   总被引:5,自引:1,他引:4  
使用MISES程序数值模拟了跨声速吸附式压气机叶栅流场, 重点研究了吸气量和吸气位置对跨声速压气机叶栅气动性能的影响.结果表明, 叶栅来流马赫数和方向一定时, 吸气位置和吸气量是相互关联的关键参数, 不同的吸气位置对应着不同的最佳吸气量, 且随着吸气位置向后缘远离激波, 最佳吸气量呈逐渐增大之势.从吸气对叶片吸力面边界层的影响效果分析, 理想的吸气位置应该是在靠近激波后附面层发展到一局部极大值即将进入过渡段的位置附近.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号