首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations of the solar spectrum have been made between 1200–2200 with high spectral resolution. The results were obtained with an all-reflecting echelle spectrograph carried by a stabilized Skylark rocket launched in April 1970. Measurements of the profiles of a number of emission lines due to Siii, Cii, Siiii and Civ formed in the temperature range 104-105 K, indicate ion energies which are considerably in excess of the electron temperatures derived from the ionization balance. Since the ion/electron relaxation time is very short the observed ion energies cannot correspond to an ion temperature and hence a non-thermal mechanical energy component exists in the transition zone.It is postulated that the non-thermal energy component represents the actual mechanical energy responsible for the heating of the corona, and, that, it is propagated as an acoustic wave. On this basis and with a preliminary estimate of the reflection from the transition zone, a flux of 3 × 105 erg cm -2 s -1 is established as entering the corona. This value is in agreement with estimates of the total energy loss from the corona due to conduction, radiation and the solar wind, thus establishing a gross energy balance.Theoretical calculations are currently underway to establish the physical nature of the atmosphere which would result from such a propagating flux. At the present time this has been carried out for an atmosphere in hydrostatic equilibrium and the energy balance equation solved. A preliminary temperature structure which results is shown in Figure 1, together with the derived distribution in electron density. This gives a corona of the right temperature and density but the observed structure deviates in detail from those derived from an analysis of the solar XUV spectrum.  相似文献   

2.
Carlson  C.W.  McFadden  J.P.  Turin  P.  Curtis  D.W.  Magoncelli  A. 《Space Science Reviews》2001,98(1-2):33-66
The ion and electron plasma experiment on the Fast Auroral Snapshot satellite (FAST) is designed to measure pitch-angle distributions of suprathermal auroral electrons and ions with high sensitivity, wide dynamic range, good energy and angular resolution, and exceptional time resolution. These measurements support the primary scientific goal of the FAST mission to understand the physical processes responsible for auroral particle acceleration and heating, and associated wave-particle interactions. The instrument includes a complement of 8 pairs of `Top Hat' electrostatic analyzer heads with microchannel plate (MCP) electron multipliers and discrete anodes to provide angle resolved measurements. The analyzers are packaged in four instrument stacks, each containing four analyzers. These four stacks are equally spaced around the spacecraft spin plane. Analyzers mounted on opposite sides of the spacecraft operate in pairs such that their individual 180° fields of view combine to give an unobstructed 360° field of view in the spin plane. The earth's magnetic field is within a few degrees of the spin plane during most auroral crossings, so the time resolution for pitch-angle distribution measurements is independent of the spacecraft spin period. Two analyzer pairs serve as electron and ion spectrometers that obtain distributions of 48 energies at 32 angles every 78 ms. Their standard energy ranges are 4 eV to 32 keV for electrons and 3 eV to 24 keV for ions. These sensors also have deflection plates that can track the magnetic field direction within 10° of the spin plane to resolve narrow, magnetic field-aligned beams of electrons and ions. The remaining six analyzer pairs collectively function as an electron spectrograph, resolving distributions with 16 contiguous pitch-angle bins and a selectable trade-off of energy and time resolution. Two examples of possible operating modes are a maximum time resolution mode with 16 angles and 6 energies every 1.63 ms, or a maximum energy resolution mode with 16 angles and 48 energies every 13 ms. The instrument electronics include mcp pulse amplifiers and counters, high voltage supplies, command/data interface circuits, and diagnostic test circuits. All data formatting, commanding, timing and operational control of the plasma analyzer instrument are managed by a central instrument data processing unit (IDPU), which controls all of the FAST science instruments. The IDPU creates slower data modes by averaging the high rate measurements collected on the spacecraft. A flexible combination of burst mode data and slower `survey' data are defined by IDPU software tables that can be revised by command uploads. Initial flight results demonstrate successful achievement of all measurement objectives.  相似文献   

3.
From a short observation of GX 5-1 with EXOSAT we have derived information on spectral and temporal behaviour in the energy range 1–20 keV. The source was found to be variable on time scales from 10 s to 1 h. Describing the spectrum one is forced to assume at least two spectral components. The best fit is reached using a spectrum composed of two blackbody functions with typical temperatures 1 keV and 2 keV, corresponding to apparent blackbody radii of 43 km and 11 km, respectively (for a distance of 10 kpc). With respect to the hot component there is evidence for variability in temperature as well as in apparent blackbody radius. No periodic variability has been found over the period range 0.25 s to 2000 s. There is no evidence for an iron emission line.  相似文献   

4.
High spectral resolution X-ray instruments on powerful X-ray satellites (e.g. Chandra, XMM-Newton) pointed through dust and gas at bright black holes and neutron stars can be used to study dust and intervening material in unique ways. With the new subfield of Condensed Matter Astrophysics as its goal, I will discuss current efforts to combine techniques and knowledge from condensed matter physics and astrophysics to determine the species-specific quantity and composition of interstellar gas and dust in the ISM and ionized environments. Prospects for improving on this work in future X-ray missions with higher throughput and spectral resolution are also presented in the context of spectral resolution goals for gratings and calorimeters.  相似文献   

5.
The THEMIS ESA Plasma Instrument and In-flight Calibration   总被引:3,自引:0,他引:3  
The THEMIS plasma instrument is designed to measure the ion and electron distribution functions over the energy range from a few eV up to 30 keV for electrons and 25 keV for ions. The instrument consists of a pair of “top hat” electrostatic analyzers with common 180°×6° fields-of-view that sweep out 4π steradians each 3 s spin period. Particles are detected by microchannel plate detectors and binned into six distributions whose energy, angle, and time resolution depend upon instrument mode. On-board moments are calculated, and processing includes corrections for spacecraft potential. This paper focuses on the ground and in-flight calibrations of the 10 sensors on five spacecraft. Cross-calibrations were facilitated by having all the plasma measurements available with the same resolution and format, along with spacecraft potential and magnetic field measurements in the same data set. Lessons learned from this effort should be useful for future multi-satellite missions.  相似文献   

6.
Recent advances in the art of estimating spectral densities have led to speculation that these same techniques could be used to improve angular resolution in radar applications. An improvement in angular resulution would be particularly helpful in sepingrating low angle returns from their surface reflected images. Despite the duality between time and space, however, it turns out that the low angle radar problem is different from the usual spectral estimation problem in a rather fundamental way. The unfortunate result is that the improved spectral estimation techniques are of little, if any, value in solving the low angle tracking problems.  相似文献   

7.
Super resolution synthetic aperture radar (SAR) image formation via sophisticated parametric spectral estimation algorithms is considered. Parametric spectral estimation methods are devised based on parametric data models and are used to estimate the model parameters. Since SAR images rather than model parameters are often used in SAR applications, we use the parameter estimates obtained with the parametric methods to simulate data matrices of large dimensions and then use the fast Fourier transform (FFT) methods on them to generate SAR images with super resolution. Experimental examples using the MSTAR and Environmental Research Institute of Michigan (ERIM) data illustrate that robust spectral estimation algorithms can generate SAR images of higher resolution than the conventional FFT methods and enhance the dominant target features  相似文献   

8.
X-ray spectra of galaxy clusters are dominated by the thermal emission from the hot intracluster medium. In some cases, besides the thermal component, spectral models require additional components associated, e.g., with resonant scattering and charge exchange. The latter produces mostly underluminous fine spectral features. Detection of the extra components therefore requires high spectral resolution. The upcoming X-ray missions will provide such high resolution, and will allow spectroscopic diagnostics of clusters beyond the current simple thermal modeling. A representative science case is resonant scattering, which produces spectral distortions of the emission lines from the dominant thermal component. Accounting for the resonant scattering is essential for accurate abundance and gas motion measurements of the ICM. The high resolution spectroscopy might also reveal/corroborate a number of new spectral components, including the excitation by non-thermal electrons, the deviation from ionization equilibrium, and charge exchange from surface of cold gas clouds in clusters. Apart from detecting new features, future high resolution spectroscopy will also enable a much better measurement of the thermal component. Accurate atomic database and appropriate modeling of the thermal spectrum are therefore needed for interpreting the data.  相似文献   

9.
构造一种新的谱体积(spectral volume)格式来求解双曲型守恒律,记为SVMWENO5(Spectral Volume method byMulti-Weighted Essentially Non-Oscillatory)格式。其主要思想是:第一步,将空间计算区域划分为一系列单元,称为谱体积,等分每个谱体积为一些子单元,称为控制体积(control volume)。第二步,在谱体积内部采用类似MWENO5(Multi-Weighted Essentially Non-Oscillatory)的格式进行重构,而在谱体积的边界处采用传统WENO5格式进行处理。第三步,利用Runge-Kutta TVD离散方法对半离散格式进行时间离散,得到时空一致高精度全离散格式。最后,在文中给出几个经典数值算例用以验证本格式的计算能力。  相似文献   

10.
介绍了GT9000微波合成信号源的频率合成方案。讨论了怎样在10MHz~26.5GHz的频率范围内产生具有理想频谱和1Hz分辨力的高稳定的微波信号。  相似文献   

11.
In different practical situations it is desired to estimate the number of signal sources and their positions in space or in frequency domain. The first problem is known as the detection or the order estimation and the second one as the resolution. For the resolution problem techniques such as nonlinear least squares (NLSM), high-order Yule-Walker method (HOYW), multiple signal classification (MUSIC), Pisarenko harmonic retrieval method, min-norm method, estimation of signal parameters by rotational invariance technique (ESPRIT), were proposed (Marple, 1987 and Stoica and Moses, 1997). All these high-resolution methods are based on the analysis of the signal covariance matrix. But the covariance matrix is not the only choice to represent the signal spectrum. In different applications (weather radars, synthetic aperture radar (SAR) signal processing, ultrasound imaging in medicine, atmospheric turbulence measurements) the signal spectrum can be modeled through its algebraic moments. Recently a number of efficient nonparametric methods have been proposed to estimate the algebraic spectral moments (Monakov, 1999). The presented paper is an attempt to solve the direction of arrival (DOA) problem via estimation of the algebraic spectral moments. A method proposed in the article is comparable in its accuracy with the MUSIC method. At the same time its computational burden is much lower. The method permits to estimate the signal power of sources easily to complete the full spectral line analysis. Additionally the method shows good robustness in situations when signal sources have noticeable spatial extend  相似文献   

12.
The Sun is the most important energy source for the Earth. Since the incoming solar radiation is not equally distributed and peaks at low latitudes the climate system is continuously transporting energy towards the polar regions. Any variability in the Sun-Earth system may ultimately cause a climate change. There are two main variability components that are related to the Sun. The first is due to changes in the orbital parameters of the Earth induced by the other planets. Their gravitational perturbations induce changes with characteristic time scales in the eccentricity (~100,000 years), the obliquity (angle between the equator and the orbital plane) (~40,000 years) and the precession of the Earth’s axis (~20,000 years). The second component is due to variability within the Sun. A variety of observational proxies reflecting different aspects of solar activity show similar features regarding periodic variability, trends and periods of very low solar activity (so-called grand minima) which seem to be positively correlated with the total and the spectral solar irradiance. The length of these records ranges from 25 years (solar irradiance) to 400 years (sunspots). In order to establish a quantitative relationship between solar variability and solar forcing it is necessary to extend the records of solar variability much further back in time and to identify the physical processes linking solar activity and total and spectral solar irradiance. The first step, the extension of solar variability, can be achieved by using cosmogenic radionuclides such as 10Be in ice cores. After removing the effect of the changing geomagnetic field, a 9000-year long record of solar modulation was obtained. Comparison with paleoclimatic data provides strong evidence for a causal relationship between solar variability and climate change. It will be the subject of the next step to investigate the underlying physical processes that link solar variability with the total and spectral solar irradiance.  相似文献   

13.
Gamma-ray lines are the fingerprints of nuclear transitions, carrying the memory of high energy processes in the universe. Setting out from what is presently known about line emission in gamma-ray astronomy, requirements for future telescopes are outlined. The inventory of observed line features shows that sources with a wide range of angular and spectral extent have to be handled: the scientific objectives for gamma-ray spectroscopy are spanning from compact objects as broad class annihilators, over longlived galactic radioisotopes with hotspots in the degree-range to the extremely extended galactic disk and bulge emission of the narrow e-e+ line.The instrumental categories which can be identified in the energy range of nuclear astrophysics have their origins in the different concepts of light itself: geometrical optics is the base of coded aperture systems — these methods will continue to yield adequate performances in the near future. Beyond this, focusing telescopes and Compton telescopes, based on wave- and quantum- optics respectively, may be capable to further push the limits of resolution and sensitivity.  相似文献   

14.
New theoretical fundamentals for calculating heat exchange in turbulent fluid flows are considered with the use of spectral representations of hydrodynamic and thermophysical flow parameters. To classify and regulate random and chaotic time variations in the flow parameters the integral Fourier transformations are used to reduce the equations of continuity, momentum and energy to the spectral form. A closed system of equations of turbulent fluid motion was obtained to determine the averaged flow parameters and their statistic characteristics.  相似文献   

15.
Ergun  R.E.  Carlson  C.W.  Mozer  F.S.  Delory  G.T.  Temerin  M.  McFadden  J.P.  Pankow  D.  Abiad  R.  Harvey  P.  Wilkes  R.  Primbsch  H.  Elphic  R.  Strangeway  R.  Pfaff  R.  Cattell  C.A. 《Space Science Reviews》2001,98(1-2):67-91
We describe the electric field sensors and electric and magnetic field signal processing on the FAST (Fast Auroral SnapshoT) satellite. The FAST satellite was designed to make high time resolution observations of particles and electromagnetic fields in the auroral zone to study small-scale plasma interactions in the auroral acceleration region. The DC and AC electric fields are measured with three-axis dipole antennas with 56 m, 8 m, and 5 m baselines. A three-axis flux-gate magnetometer measures the DC magnetic field and a three-axis search coil measures the AC magnetic field. A central signal processing system receives all signals from the electric and magnetic field sensors. Spectral coverage is from DC to 4 MHz. There are several types of processed data. Survey data are continuous over the auroral zone and have full-orbit coverage for fluxgate magnetometer data. Burst data include a few minutes of a selected region of the auroral zone at the highest time resolution. A subset of the burst data, high speed burst memory data, are waveform data at 2×106 sample s–1. Electric field and magnetic field data are primarily waveforms and power spectral density as a function of frequency and time. There are also various types of focused data processing, including cross-spectral analysis, fine-frequency plasma wave tracking, high-frequency polarity measurement, and wave-particle correlations.  相似文献   

16.
The Broad-Band X-Ray Telescope (BBXRT) has been designed to perform high sensitivity, moderate resolution spectrophototnetry of X-ray sources in the 0.3–12 keV band from the Shuttle. It consists of a coaligned pair of high throughput, conical X-ray imaging mirrors, with a cryogenically-cooled, multiple element, Si(Li) spectrometer at the focus of each. On axis, BBXRT will have an effective area of 580 cm2 at 2 keV and 250 cm2 at 7 keV, and a spectral resolution of 110 eV at 2 keV and 150 eV at 7 keV. A 104 s observation with BBXRT will allow a determination of the continuum spectral shape for sources near the Einstein deep survey limit.  相似文献   

17.
An experiment was performed to determine the effect on radar image interpretation of: 1) rectangular instead of square pixels, and 2) spatial resolution in the presence of noncoherent averaging. The result is a proof of the hypothesis that interpretability of images is determined by a "spatial-gray-level (SGL) resolution volume" that is the product of the range resolution, the azimuth resolution, and a gray-level resolution. The last is defined as the ratio of the value exceeded 10 percent of the time to that exceeded 90 percent of the time for a chi-square distribution having twice as many degrees of freedom as the number of independent samples averaged. Since the area of the pixel enters, rather than explicit dependence on range or azimuth resolution, rectangular pixels are as interpretable as square pixels having the same area. The SGL accounts for the effect of reduction in fading on interpretability. The numerical interpretability assigned by experienced image interpreters asked to look for specific classes of targets was found to fall exponentially with increasing SGL volume, with a scale determined by the class of target. The experiment showed that, for most of the tasks assigned to the interpreters, the interpretability is reduced to 37 percent for a fully focussed synthetic-aperture radar (SAR) (1-look) for a 10-m (33-ft) square pixel. With an infinite number of samples averaged, the comparable square-pixel dimension is 48 m (157 ft). This is consistent with results obtained using LANDSAT images of about 60-m resolution.  相似文献   

18.
The Polar Ionospheric X-ray Imaging Experiment (PIXIE)   总被引:2,自引:0,他引:2  
The Polar Ionospheric X-ray Imaging Experiment (PIXIE) is an X-ray multiple-pinhole camera designed to image simultaneously an entire auroral region from high altitudes. It will be mounted on the despun platform of the POLAR spacecraft and will measure the spatial distribution and temporal variation of auroral X-ray emissions in the 2 to 60 keV energy range on the day side of the Earth as well as the night. PIXIE consists of two pinhole cameras integrated into one assembly, each equipped with an adjustable aperture plate that allows an optimum number of nonoverlapping images to be formed in the detector plane at each phase of the satellite's eccentric orbit. The aperture plates also allow the pinhole size to be adjusted so that the experimenter can trade off spatial resolution against instrument sensitivity. In the principal mode of operation, one aperture plate will be positioned for high spatial resolution and the other for high sensitivity. The detectors consist of four stacked multiwire position-sensitive proportional counters, two in each of two separate gas chambers. The front chamber operates in the 2–12 keV energy range and the rear chamber in the 10–60 keV range. All of the energy and position information for each telemetered X-ray event is available on the ground. This enables the experimenter to adjust the exposure timepostfacto so that energy spectra of each X-ray emitting region can be independently accumulated. From these data PIXIE will provide, for the first time, global images of precipitated energetic electron spectra, energy inputs, ionospheric electron densities, and upper atmospheric conductivities.  相似文献   

19.
The Composite Infrared Spectrometer (CIRS) is a remote-sensing Fourier Transform Spectrometer (FTS) on the Cassini orbiter that measures thermal radiation over two decades in wavenumber, from 10 to 1400 cm− 1 (1 mm to 7μ m), with a spectral resolution that can be set from 0.5 to 15.5 cm− 1. The far infrared portion of the spectrum (10–600 cm− 1) is measured with a polarizing interferometer having thermopile detectors with a common 4-mrad field of view (FOV). The middle infrared portion is measured with a traditional Michelson interferometer having two focal planes (600–1100 cm− 1, 1100–1400 cm− 1). Each focal plane is composed of a 1× 10 array of HgCdTe detectors, each detector having a 0.3-mrad FOV. CIRS observations will provide three-dimensional maps of temperature, gas composition, and aerosols/condensates of the atmospheres of Titan and Saturn with good vertical and horizontal resolution, from deep in their tropospheres to high in their mesospheres. CIRS’s ability to observe atmospheres in the limb-viewing mode (in addition to nadir) offers the opportunity to provide accurate and highly resolved vertical profiles of these atmospheric variables. The ability to observe with high-spectral resolution should facilitate the identification of new constituents. CIRS will also map the thermal and compositional properties of the surfaces of Saturn’s icy satellites. It will similarly map Saturn’s rings, characterizing their dynamical and spatial structure and constraining theories of their formation and evolution. The combination of broad spectral range, programmable spectral resolution, the small detector fields of view, and an orbiting spacecraft platform will allow CIRS to observe the Saturnian system in the thermal infrared at a level of detail not previously achieved.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

20.
PEACE: A PLASMA ELECTRON AND CURRENT EXPERIMENT   总被引:3,自引:0,他引:3  
An electron analyser to measure the three-dimensional velocity distribution of electrons in the energy range from 0.59 eV to 26.4 keV on the four spacecraft of the Cluster mission is described. The instrument consists of two sensors with hemispherical electrostatic energy analysers with a position-sensitive microchannel plate detectors placed to view radially on opposite sides of the spacecraft. The intrinsic energy resolutions of the two sensors are 12.7% and 16.5% full width at half maximum. Their angular resolutions are 2.8° and 5.3° respectively in an azimuthal direction and 15° in a polar direction. The two sensors will normally measure in different overlapping energy ranges and will scan the distribution in half a spacecraft rotation or 2 s in the overlapped range. While this is the fastest time resolution for complete distributions, partial distributions can be recorded in as little as 62.5 ms and angular distributions at a fixed energy in 7.8 ms. The dynamic range of the instrument is sufficient to provide accurate measurements of the main known populations from the tail lobe to the plasmasheet and the solar wind. While the basic structure of the instrument is conventional, special attention has been paid in the design to improving the precision of the instrument so that a relative accuracy of the order of 1% could be attained in flight in order to measure the gradients between the four spacecraft accurately; to decreasing the minimum energy covered by this technique from 10 eV down to 1 eV; and to providing good three dimensional distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号