首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Conclusions During the past three years there have been significant extensions of the solar data available. Over most of the solar spectrum between 1 – 2200 the new or improved observations have led to interesting problems in line identifications. The identifications have in turn led to new methods of determining the physical conditions in the solar atmosphere, eg electron density determinations from the Hei like ion intercombination line to forbidden line ratio (Gabriel and Jordan, 1969b). The majority of the strong lines have now been identified, either by theoretical considerations or from the extensive laboratory data which have recently become available. However, weak lines may also aid the understanding of the chromosphere and corona and work on the identifications of all remaining features observed must continue.  相似文献   

2.
This paper is a review of the basic theoretical dynamical properties of an atmosphere with an extended temperature strongly bound by gravity. The review begins with the historical developments leading up to the realization that the only dynamical equilibrium of an atmosphere with extended temperature is supersonic expansion. It is shown that sufficient conditions for supersonic expansion are T(r) declining asymptotically less rapidly than 1/r, or the density at the base of the corona being less than N b given by (40) if no energy is available except through thermal conductivity, or the temperature falling within the limits given by (18) if T N -1 throughout the corona. Less extended temperatures lead to equilibria which are subsonic or static. The hypothetical case of a corona with no energy supply other than thermal conduction from its base is considered at some length because the equations may be solved by analytical methods and illustrate the transition from subsonic to supersonic equilibrium as the temperature becomes more extended. Comparison with the actual corona shows that the solar corona is actively heated for some distance into space by wave dissipation.The dynamical stability of the expanding atmosphere is demonstrated, and in a later section the radial propagation of acoustic and Alfvén waves through the atmosphere and wind is worked out. The calculations show that the magnetometer will probably detect waves more easily than the plasma instrument, but that both are needed to determine the mode and direction of the wave. An observer in the wind at the orbit of Earth can listen to disturbances generated in the corona near the sun and in turbulent regions in interplanetary space.The possibility that the solar corona is composed of small-scale filaments near the sun is considered. It is shown that such filamentary structure would not be seen at the orbit of Earth. It is pointed out that the expansion of a non-filamentary corona seems to lead to too high a calculated wind density at the orbit of Earth to agree with the present observations, unless T(r) is constant or increases with r. A filamentary corona, on the other hand, would give the observed wind density for declining T(r).It is shown that viscosity plays no important role in the expansion of an atmosphere either with or without a weak magnetic field. The termination of the solar wind, presumably between 10–103 AU, is discussed briefly. The interesting development here is the interplanetary L recently observed, which may come from the interstellar neutral hydrogen drifting into the outer regions of the solar wind.Theory is at the present time concerned with the general dynamical principles which pertain to the expansion equilibrium of an atmosphere. It is to be expected that the rapid progress of direct observations of the corona and wind will soon permit more detailed studies to be carried out. It is important that the distinction between detailed empirical models and models intended to illustrate general principles be kept clearly in mind at all times.This work was supported by the National Aeronautics and Space Administration under Grant NASA-NsG-96-60.  相似文献   

3.
There is a warm tenuous partially ionized cloud (T104 K,n(HI)0.1 cm–3,n(Hii 0.22–0.44 cm–3) surrounding the solar system which regulates the environment of the solar system, determines the structure of the heliopause region, and feeds neutral interstellar gas into the inner solar system. The velocity (V–20 km s–1 froml335°,b0° in the local standard of rest) and enhanced Caii and Feii abundances of this cloud suggest an origin as evaporated gas from cloud surfaces in the Scorpius-Centaurus Association. Although the soft X-ray emission attributed to the Local Bubble is enigmatic, optical and ultraviolet data are consistent with bubble formation caused by star formation epochs in the Scorpius-Centaurus Association as regulated by the nearby spiral arm configuration. The cloud surrounding the solar system (the local fluff) appears to be the leading region of an expanding interstellar structure (the squall line) which contains a magnetic field causing polarization of the light of nearby stars, and also absorption features in nearby upwind stars. The velocity vectors of the solar system and local fluff are perpendicular in the local standard of rest. Combining this information with the low column densities seen towards Sirius in the anti-apex direction, and the assumption that the cloud velocity vector is parallel to the surface normal, suggests that the Sun entered the local fluff within the historical past (less than 10 000 years ago) and is skimming the surface of the cloud. Comparison of magnesium absorption lines towards Sirius and anomalous cosmic-ray data suggest the local fluff is in ionization equilibrium.Reason has moons, but moons not hers, Lie mirror'd on her sea, Confounding her astronomers, But, O! delighting me.Ralph Hodgson  相似文献   

4.
Spartan 201 is a shuttle deployed spacecraft that is scheduled to perform ultraviolet spectroscopy and white light polarimetry of the extended solar corona during two 40 hour missions to occur in September 1994 and August 1995. The spectroscopy is done with an ultraviolet coronal spectrometer which measures the intensity and spectral line profile of HI Ly up to heliocentric heights of 3.5 solar radii. It also measures the intensities of the OVI doublet at 1032 and 1037 Å and of Fe XII at 1242 Å. The HI Ly line profile measurements are used to determine the random velocity distribution of coronal protons along the line-of-sight. The absolute HI Ly intensities can be used together with electron densities from the white light coronagraph to estimate electron temperatures from hydrogen ionization balance calculations, and bulk outflow velocities from models of Doppler dimmed resonant scattering. Intensities of minor ion lines are used to determine coronal abundances and outflow velocities of O5+. Ultraviolet spectroscopy of extended coronal regions from the 11 April 1993 mission of Spartan 201 are discussed.  相似文献   

5.
We expect a variety of dynamic phenomena in the quiescent non-flaring corona. Plasma flows, such as siphon flows or convective flows of chromospheric material evaporating into the corona, are expected whenever a pressure differences is established either between the footpoints or between the coronal and chromospheric segments of a coronal loop. Such flows can induce phenomena of spatial and temporal brightness variability of the corona. In particular, evaporation induces a net mass input into the corona and consequently coronal density enhancements. Flows are also expected in the regions where energy is released during magnetic reconnection. From the observational point of view the dynamics of the solar atmosphere has been investigated in great detail mostly in the lower transition region with the HRTS, and during flares with theSolar Maximum Mission andYohkoh. The high spectral, temporal and spatial resolution of theSOHO ultraviolet spectrometers should enable us in the near future to fill the gap providing a continuous coverage from the chromosphere to the corona, in the 104–106 K domain, and therefore to best study the dynamics throughout the solar atmosphere.  相似文献   

6.
Measurements of the intensities and profiles of UV and EUV spectral lines can provide a powerful tool for probing the physical conditions in the solar corona out to 8 R and beyond. We discuss here how measurements of spectral line radiation in conjunction with measurements of the white light K-corona can provide information on electron, proton and ion temperatures and velocity distribution functions; densities; chemical abundances and mass flow velocities. Because of the fundamental importance of such information, we provide a comprehensive review of the formation of coronal resonance line radiation, with particular emphasis on the H i L line, and discuss observational considerations such as requirements for rejection of stray light and effects of emission from the geocorona and interplanetary dust. Finally, we summarize some results of coronal H i L and white light observations acquired on sounding rocket flights.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.  相似文献   

7.
Studies of sporadic outbursts, ranging from flares to nano-flares, invariably endow the solar corona with steady plasma conditions, prior to seeking a current-flow (or the associated magnetic structure) which induces instability. Such an approach does not incorporate a crucial feature of the natural configuration, namely, that the material is of chromospheric origin, and only resides at coronal altitudes for as long as it can acquire adequate energy. There is clearly a feedback loop involved, which allows plasma to moderate the transfer of energy from the field while making use of this heat to permeate coronal altitudes. An examination of the whole procedure is necessary if the location and threshold-conditions for the energy-conversion mechanism are to be identified.A critical step in the feedback procedure mentioned involves the supply line which links the corona to the chromosphere. Because the solar atmosphere has such large vertical dimensions, even a modest change in average temperature and/or density can place heavy demands on this artery: the problem is that a conventional conduction-dominated transition layer cannot readily accommodate a rapid increase in current-density or plasma-flow. (Restructuring of the temperature gradient, to provide the carriers with extra heat, is a very slow process.) A transition layer of this type is unable to endure for long at the base of a sporadically-heated atmosphere in any case, since it becomes the target for plasma falling in the gravitational field during each intermediate cooling phase. As a result, the gap between the chromosphere and corona is more abrupt than is usually considered, endowing the region with thermo-electric characteristics which allow energy to be extracted when modest current-densities arise. Energy-conversion at this region fulfills two rôles: it supplies at least part of the heat required by the overlying corona, and maintains contact between the chromosphere and corona via non-thermal transport processes.  相似文献   

8.
We review recent advances in determining the elemental, charge-state, and isotopic composition of 1 to 20 MeV per nucleon ions in solar energetic particle (SEP) events and outline our current understanding of the nature of solar and interplanetary processes which may explain the observations.The composition within individual SEP events may vary both with time and energy, and will in general be different from that in other SEP events. Average values of relative abundances measured in a large number of SEP events, however, are found to be roughly energy independent in the 1 to 20 MeV per nucleon range, and show a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion.Direct measurements of the charge states of SEPs have revealed the surprisingly common presence of energetic He+ along with heavy ions with typically coronal ionization states. High-resolution measurements of isotopic abundance ratios in a small number of SEP events show these to be consistent with the universal composition except for the puzzling overabundance of the SEP 22Ne/20Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of 3He-rich, heavy-ion rich and carbon-poor SEP events, along with direct measurements of the ionization states of SEPs provide essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production.It is concluded that SEP acceleration is a two-step process, beginning with plasma-wave heating of the ambient plasma in the lower corona, which may include pockets of cold material, and followed by acceleration to the observed energies by either flare-generated coronal shocks or Fermi-type processes in the corona. Interplanetary propagation as well as acceleration by interplanetary propagating shock will often further modify the composition of SEP events, especially at lower energies.  相似文献   

9.
Magnetospheric ions, solar wind ions, and locally produced pick-up ions can impact the atmospheres of objects in the solar system, transferring energy by collisions with atmospheric atoms and molecules. This can result in an expansion of the atmospheric corona with a fraction of the energetic atoms or molecules being lost (sputtered) from the atmosphere. The expanded corona presents a larger target to the incident plasma, which in turn enhances pick-up ion formation and collisional ejection. In this manner a significant flux of atoms or molecules can be lost from an atmosphere, affecting its long-term evolution. This has been shown to be an important process for the dynamics and evolution of the atmosphere of lo, which is bombarded by the Jovian magnetospheric plasma, and for loss of atmosphere from Titan. Sputtering by pick-up ion bombardment has been shown to remove material from the atmosphere of Mars affecting the observed isotope ratios, and energetic O+ precipitation affects the Earth's thermosphere. The physics of ion bombardment of a gas which leads to atmospheric sputtering is described here. Analytic expressions derived from transport equations are shown to be useful for estimating the sputtering rate. These are compared to results from transport and Monte-Carlo calculations.  相似文献   

10.
    
A number of previously unclassified multiplets of Fexiv, xiii, xii, and xi produced by transitions of the type 3s 23p n -3s3p n+1 are identified in the XUV spectrum of the Sun. The iron lines account for most of the previously unidentified strong lines between 330 and 370 . Solar observations of especial value for the investigation of the 300–400 region were the slitless spectroheliograms of September 22, 1968 (Purcell and Tousey, 1969) and November 4, 1969 (Tousey, 1971) — on which the image of a flare was recorded.Other solar identifications in the same spectral region include the resonance lines of Nixvii and Nixviii, and one 3p-3d multiplet of Fexiii. The solar blend at 417 involving the Fexv inter-combination line and Sxiv is resolved.  相似文献   

11.
This paper summarizes new data in several fields of astronomy that relate to the origin and acceleration of cosmic rays in our galaxy and similar nearby galaxies. Data from radio astronomy shows that supernova remnants, both in our galaxy and neighboring galaxies, appear to be the sources of most of the accelerated electrons observed in these galaxies. -ray measurements also reveal several strong sources associated with supernova remnants in our galaxy. These sources have -ray spectra that are suggestive of the acceleration of cosmic-ray nuclei. Cosmic-ray observations from the Voyager and Ulysses spacecraft suggest a source composition that is very similar to the solar composition but with distinctive differences in the 4He, 12C,14 N and 22Ne abundances that are the imprint of giant W-R star nucleosynthesis. Injection effects which depend on the first ionization potential (FIP) of the elements involved are also observed, in a manner similar to the fractionization observed between the solar photosphere and corona and also analogous to the preferential acceleration observed for high FIP elements at the heliospheric solar wind termination shock. Most of the 59Ni produced in the nucleosynthesis of Fe peak nuclei just prior to a SN explosion appears to have decayed to 59Co before the cosmic rays have been accelerated, suggesting that the59 Ni is accelerated at least 105 yr after it is produced. The decay of certain K capture isotopes produced during cosmic-ray propagation has also been observed for the first time. These measurements suggest that re-acceleration after an initial principal acceleration cannot be large. The high energy spectral indices of cosmic-ray nuclei show a significant charge dependent trend with the index of hydrogen being -2.76 and that of Fe -2.61. The escape length dependence of cosmic rays from our galaxy can now be measured up to ~300 GeV nucl-1 using the Fe sec/Fe ratio. This escape length is P -0.05 above 10 GeV nucl-1 leading to a typical source spectral index of (2.70±0.10) -0.50 = -2.20 for nuclei. This is similar to the source index of -2.3 inferred for electrons within the errors of ±0.1 in the index for both components. Spacecraft measurements in the outer heliosphere suggest that the local cosmic-ray energy density is ~2eV cm-3 – larger than previously assumed. Gamma-ray measurements of electron bremsstrahlung below 50 MeV from the Comptel experiment on CGRO show that fully 20–30% of this energy is in electrons, several times that previously assumed. New estimates of the amount of matter traversed by cosmic rays using measurements of the B/C ratio are also higher than earlier estimates – this value is now ~10 g cm-2 at 1 GeV nucl-1. Thus altogether cosmic rays are energetically a more important component of our galaxy than previously assumed. This has implications both for the types of sources that are capable of accelerating cosmic rays and also for the role that cosmic rays may play in ionizing the diffuse interstellar medium.  相似文献   

12.
We present a simple technique describing how limits on the helium abundance, , the ratio of helium to proton number density, can be inferred from measurements of the electron density, temperature and their gradients below 1.5R s. As an illustration, we apply this technique to emission line intensities in the extreme ultraviolet, measured in polar coronal holes. The example indicates that can be significantly large in the inner corona. This technique could be applicable to the more extensive data to be obtained from coordinated ground and space-based observations during the Ulysses south polar passage and the Spartan flight, and subsequently during the SOHO mission. Limits on the helium abundance in the solar wind can thus be derived from its source region and compared to interplanetary values.  相似文献   

13.
Using empirical velocity distributions derived from UVCS and SUMER ultraviolet spectroscopy, we construct theoretical models of anisotropic ion temperatures in the polar solar corona. The primary energy deposition mechanism we investigate is the dissipation of high frequency (10-10000 Hz) ion-cyclotron resonant Alfvén waves which can heat and accelerate ions differently depending on their charge and mass. We find that it is possible to explain the observed high perpendicular temperatures and strong anisotropies with relatively small amplitudes for the resonant waves. There is suggestive evidence for steepening of the Alfvén wave spectrum between the coronal base and the largest heights observed spectroscopically. Because the ion-cyclotron wave dissipation is rapid, even for minor ions like O5+, the observed extended heating seems to demand a constantly replenished population of waves over several solar radii. This indicates that the waves are generated gradually throughout the wind rather than propagated up from the base of the corona. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The ESA/NASA spacecraft Ulysses is making, for the first time, direct measurements in the solar wind originating from virtually all places where the corona expands. Since the initial two polar passes of Ulysses occur during relatively quiet solar conditions, we discuss here the three main regimes of quasi-stationary solar wind flow: the high speed streams (HSSTs) coming out of the polar coronal holes, the slow solar wind surrounding the HSSTs, and the streamers which occur at B-field reversals. Comparisons between H- maps and data taken by Ulysses demonstrate that as a result of super-radial expansion, the HSSTs occupy a much larger solid angle than that derived from radial projections of coronal holes. Data obtained with SWICS-Ulysses confirm that the strength of the FIP effect is much reduced in the HSSTs. The systematics in the variations of elemental abundances becomes particularly clear, if these are plotted against the time of ionisation (at the solar surface) rather than against the first ionisation potential (FIP). We have used a superposed-epoch method to investigate the changes in solar wind speed and composition measured during the 9-month period in 1992/93 when Ulysses regularly passed into and out of the southern HSST. We find that the patterns in the variations of the Mg/O and O7+/O6+ ratios are virtually identical and that their transition from high to low values is very steep. Since the Mg/O ratio is controlled by the FIP effect and the O7+/O6+ ratio reflects the coronal temperature, this finding points to a connection between chromospheric and coronal conditions.  相似文献   

15.
Because the solar radiation and particle environment plays a major role in all atmospheric processes such as ionization, dissociation, heating of the upper atmospheres, and thermal and non-thermal atmospheric loss processes, the long-time evolution of planetary atmospheres and their water inventories can only be understood within the context of the evolving Sun. We compare the effect of solar induced X-ray and EUV (XUV) heating on the upper atmospheres of Earth, Venus and Mars since the time when the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) about 4.6 Gyr ago. We apply a diffusive-gravitational equilibrium and thermal balance model for studying heating of the early thermospheres by photodissociation and ionization processes, due to exothermic chemical reactions and cooling by IR-radiating molecules like CO2, NO, OH, etc. Our model simulations result in extended thermospheres for early Earth, Venus and Mars. The exospheric temperatures obtained for all the three planets during this time period lead to diffusion-limited hydrodynamic escape of atomic hydrogen and high Jeans’ escape rates for heavier species like H2, He, C, N, O, etc. The duration of this blow-off phase for atomic hydrogen depends essentially on the mixing ratios of CO2, N2 and H2O in the atmospheres and could last from ∼100 to several hundred million years. Furthermore, we study the efficiency of various non-thermal atmospheric loss processes on Venus and Mars and investigate the possible protecting effect of the early martian magnetosphere against solar wind induced ion pick up erosion. We find that the early martian magnetic field could decrease the ion-related non-thermal escape rates by a great amount. It is possible that non-magnetized early Mars could have lost its whole atmosphere due to the combined effect of its extended upper atmosphere and a dense solar wind plasma flow of the young Sun during about 200 Myr after the Sun arrived at the ZAMS. Depending on the solar wind parameters, our model simulations for early Venus show that ion pick up by strong solar wind from a non-magnetized planet could erode up to an equivalent amount of ∼250 bar of O+ ions during the first several hundred million years. This accumulated loss corresponds to an equivalent mass of ∼1 terrestrial ocean (TO (1 TO ∼1.39×1024 g or expressed as partial pressure, about 265 bar, which corresponds to ∼2900 m average depth)). Finally, we discuss and compare our findings with the results of preceding studies.  相似文献   

16.
17.
Nine coronal mass ejections (CMEs) have been detected in the solar wind by the Ulysses plasma experiment between 31° and 61° South. One of these events, which was also a magnetic cloud, was directly associated with an event observed by the soft X-ray telescope on Yohkoh in which large magnetic loops formed in the solar corona directly beneath Ulysses. This association suggests that the flux rope topology of the magnetic cloud resulted from reconnection between the legs of neighboring magnetic loops within the rising CME. The average CME speed (740 km s–1) at these latitudes was comparable to that of the normal solar wind there and is much greater than average CME speeds observed either in the solar wind in the ecliptic plane or in the corona close to the Sun. We suggest that the same basic acceleration process applies to both slow CMEs and the normal solar wind at any latitude.  相似文献   

18.
The Visible Imaging System (VIS) is a set of three low-light-level cameras to be flown on the POLAR spacecraft of the Global Geospace Science (GGS) program which is an element of the International Solar-Terrestrial Physics (ISTP) campaign. Two of these cameras share primary and some secondary optics and are designed to provide images of the nighttime auroral oval at visible wavelengths. A third camera is used to monitor the directions of the fields-of-view of these sensitive auroral cameras with respect to sunlit Earth. The auroral emissions of interest include those from N 2 + at 391.4 nm, Oi at 557.7 and 630.0 nm, Hi at 656.3 nm, and Oii at 732.0 nm. The two auroral cameras have different spatial resolutions. These resolutions are about 10 and 20 km from a spacecraft altitude of 8R e . The time to acquire and telemeter a 256×256-pixel image is about 12 s. The primary scientific objectives of this imaging instrumentation, together with thein-situ observations from the ensemble of ISTP spacecraft, are (1) quantitative assessment of the dissipation of magnetospheric energy into the auroral ionosphere, (2) an instantaneous reference system for thein-situ measurements, (3) development of a substantial model for energy flow within the magnetosphere, (4) investigation of the topology of the magnetosphere, and (5) delineation of the responses of the magnetosphere to substorms and variable solar wind conditions.  相似文献   

19.
This work addresses the role of non-thermal protons as a means of transporting energy in stellar atmospheres. The most dramatic transient visible phenomena are flares, the best studied of which are from the Sun. It is believed that energetic particles take a fundamental part in flare development, but it is controversial as to whether protons or electrons play the dominant role. This review is aimed at helping resolve the controversy. We start by outlining acceleration mechanisms for energetic particles, on the premise that the acceleration site is in the corona. The propagation of a proton beam through the atmosphere is discussed, together with the radiation signatures it would produce. Chromospheric evaporation is expected as the beam reaches the dense part of the atmosphere. Direct observational evidence for energetic protons is reviewed, from gamma-ray production involving energies >30 MeV to H polarization, which is significant at energies 100 keV. Proton beams can be detected in the corona via slowly-drifting type III bursts, while they can be directly sampled by spacecraft and, at energies >1 GeV, by detectors on the Earth. A number of key flare observations and energy arguments are debated from the viewpoint of protons versus electrons. The conclusion is that primary non-thermal protons are much more important, in terms of total energy, than non-thermal electrons in flares, and that the bulk of the energetic electrons are secondary.  相似文献   

20.
The radio telemetry links between Earth and a spacecraft near superior conjunction penetrate the corona at ranges well within the acceleration regime of the solar wind. Occultation experiments in the solar corona have been performed on many interplanetary missions beginning with the Mariner and Pioneer series and extending up to the more recent data on Helios, Viking, and Voyager. The changes in group and phase velocity of the radio signal are measured to determine the total electron content of the corona and its fluctuations. The broadening of the carrier signal may be used in combination with the electron content data to derive a solar wind velocity profile. The wave number spectrum of electron density fluctuations in the corona may be inferred from amplitude and phase scintillations of the received signal. Linearly polarized signals, which are rotated along the propagation path by the Faraday effect, can provide information on the coronal magnetic field and its variations.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号