首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
he Swift Gamma-Ray Explorer is designed to make prompt multiwavelength observations of gamma-ray bursts (GRBs) and GRB afterglows. The X-ray telescope (XRT) enables Swift to determine GRB positions with a few arcseconds accuracy within 100 s of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/EPIC MOS CCD detector to provide a sensitive broad-band (0.2–10 keV) X-ray imager with effective area of > 120 cm2 at 1.5 keV, field of view of 23.6 × 23.6 arcminutes, and angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2×10−14 erg cm−2 s−1 in 104 s. The instrument is designed to provide automated source detection and position reporting within 5 s of target acquisition. It can also measure the redshifts of GRBs with Fe line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return for each frame as the source intensity fades. The XRT will measure spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and will follow each burst for days or weeks. Dedicated to David J. Watson, in memory of his valuable contributions to this instrument.  相似文献   

2.
Cassini Plasma Spectrometer Investigation   总被引:1,自引:0,他引:1  
《Space Science Reviews》2004,114(1-4):1-112
The Cassini Plasma Spectrometer (CAPS) will make comprehensive three-dimensional mass-resolved measurements of the full variety of plasma phenomena found in Saturn’s magnetosphere. Our fundamental scientific goals are to understand the nature of saturnian plasmas primarily their sources of ionization, and the means by which they are accelerated, transported, and lost. In so doing the CAPS investigation will contribute to understanding Saturn’s magnetosphere and its complex interactions with Titan, the icy satellites and rings, Saturn’s ionosphere and aurora, and the solar wind. Our design approach meets these goals by emphasizing two complementary types of measurements: high-time resolution velocity distributions of electrons and all major ion species; and lower-time resolution, high-mass resolution spectra of all ion species. The CAPS instrument is made up of three sensors: the Electron Spectrometer (ELS), the Ion Beam Spectrometer (IBS), and the Ion Mass Spectrometer (IMS). The ELS measures the velocity distribution of electrons from 0.6 eV to 28,250 keV, a range that permits coverage of thermal electrons found at Titan and near the ring plane as well as more energetic trapped electrons and auroral particles. The IBS measures ion velocity distributions with very high angular and energy resolution from 1 eV to 49,800 keV. It is specially designed to measure sharply defined ion beams expected in the solar wind at 9.5 AU, highly directional rammed ion fluxes encountered in Titan’s ionosphere, and anticipated field-aligned auroral fluxes. The IMS is designed to measure the composition of hot, diffuse magnetospheric plasmas and low-concentration ion species 1 eV to 50,280 eV with an atomic resolution M/ΔM ∼70 and, for certain molecules, (such asN 2 + and CO+), effective resolution as high as ∼2500. The three sensors are mounted on a motor-driven actuator that rotates the entire instrument over approximately one-half of the sky every 3 min.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

3.
Summary On May 8, 1980, we conducted a 90 minute observation on hard X-ray emission (15-200 keV) from Her X-1, using a large area ( 1500 cm2), low background balloon borne X-ray telescope. The energy resolution of the telescope was 17% FWHM at 60 keV. Her X-1 was at binary phase 0.0725 and 2.7 ± 0.5 days after turn on in the 35 day cycle.Average pulsation light curves were obtained by sorting data into 25 equal bins, according to pulse arrival time, modulo the 1.24 sec pulsation period. The width of the main pulse is energy dependent and in the 45–75 keV region about 30% smaller than in the range from 15 to 30 keV.The data have been analyzed by taking the Her X-1 pulse minus background spectrum, where the pulse count rate is defined in a pulse phase interval around the pulse maximum of the 1.24 sec period. The background spectrum was intermittently obtained by a chopping collimator system.A spectral feature is present in emission at an energy of 49.5 (+ 1.5, -3) keV and a FWHM of 18 (+ 6, -3) keV and in absorption at an energy of 29.5 (+ 1.7, -1.5) keV and a FWHM of 17.0 (+ 2.6, -2.8) keV. The intensity of this line feature in emission is (1.8 ± 0.4) photons/cm sec. The line excess in emission over the continuum (with kT = 6.75 (+ 0.2, -0.4) keV) is 7.  相似文献   

4.
Results are presented from an X-ray survey of 50 square degrees of the high galactic latitude sky at sensitivities in the range 7·10–14 – 5·10–12 erg/cm2 sec (0·3–3·5 keV) carried out with the Imaging Proportional Counter (IPC) aboard the Einstein Observatory. The extragalactic sample consists of 48 sources which have been used to determine the number flux relation. The content of the sample is analyzed in terms of types of sources and is found to be significantly different from the content of similar samples selected at higher fluxes.  相似文献   

5.
The Composite Infrared Spectrometer (CIRS) is a remote-sensing Fourier Transform Spectrometer (FTS) on the Cassini orbiter that measures thermal radiation over two decades in wavenumber, from 10 to 1400 cm− 1 (1 mm to 7μ m), with a spectral resolution that can be set from 0.5 to 15.5 cm− 1. The far infrared portion of the spectrum (10–600 cm− 1) is measured with a polarizing interferometer having thermopile detectors with a common 4-mrad field of view (FOV). The middle infrared portion is measured with a traditional Michelson interferometer having two focal planes (600–1100 cm− 1, 1100–1400 cm− 1). Each focal plane is composed of a 1× 10 array of HgCdTe detectors, each detector having a 0.3-mrad FOV. CIRS observations will provide three-dimensional maps of temperature, gas composition, and aerosols/condensates of the atmospheres of Titan and Saturn with good vertical and horizontal resolution, from deep in their tropospheres to high in their mesospheres. CIRS’s ability to observe atmospheres in the limb-viewing mode (in addition to nadir) offers the opportunity to provide accurate and highly resolved vertical profiles of these atmospheric variables. The ability to observe with high-spectral resolution should facilitate the identification of new constituents. CIRS will also map the thermal and compositional properties of the surfaces of Saturn’s icy satellites. It will similarly map Saturn’s rings, characterizing their dynamical and spatial structure and constraining theories of their formation and evolution. The combination of broad spectral range, programmable spectral resolution, the small detector fields of view, and an orbiting spacecraft platform will allow CIRS to observe the Saturnian system in the thermal infrared at a level of detail not previously achieved.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

6.
The X-ray properties of the supernova remnant G 29.7-0.3 are discussed based on spectral data from the EXOSAT satellite. In the 2 to 10 keV range a featureless power-law spectrum is obtained, the best-fit parameters being: energy spectral index =-0.77, hydrogen column density on the line of sight NH=2.3.1022 cm–2. The incident X-ray flux from the source is (3.6±0.1) 1011 erg cm–2 s–1 in the 2 to 10 keV range corresponding to an intrinsic luminosity of about 2. 1036 erg s–1 for a distance of 19 kpc. The source was not seen with the imaging instrument thus constraining the hydrogen column density to be NH=(3.3 ±0.3) 1022 cm–2 and the energy spectral index =1.0±0.15. This new observation is consistent with emission by a synchroton nebula presumably fed by an active pulsar. An upper limit of 1.5% for the pulsed fraction in the range of periods 32ms to 104 s has been obtained.  相似文献   

7.
he burst alert telescope (BAT) is one of three instruments on the Swift MIDEX spacecraft to study gamma-ray bursts (GRBs). The BAT first detects the GRB and localizes the burst direction to an accuracy of 1–4 arcmin within 20 s after the start of the event. The GRB trigger initiates an autonomous spacecraft slew to point the two narrow field-of-view (FOV) instruments at the burst location within 20–70 s so to make follow-up X-ray and optical observations. The BAT is a wide-FOV, coded-aperture instrument with a CdZnTe detector plane. The detector plane is composed of 32,768 pieces of CdZnTe (4×4×2 mm), and the coded-aperture mask is composed of ∼52,000 pieces of lead (5×5×1 mm) with a 1-m separation between mask and detector plane. The BAT operates over the 15–150 keV energy range with ∼7 keV resolution, a sensitivity of ∼10−8 erg s−1 cm−2, and a 1.4 sr (half-coded) FOV. We expect to detect > 100 GRBs/year for a 2-year mission. The BAT also performs an all-sky hard X-ray survey with a sensitivity of ∼2 m Crab (systematic limit) and it serves as a hard X-ray transient monitor.  相似文献   

8.
We report the results of a 1.4 104s observation of the region of 4U 1323-62 with the EXOSAT ME. The source has a flux of 7–8 10-11 erg/cm2s (2–10 keV) and a power-law spectrum with 1.1 < < 1.8. During our observation, the source showed a symmetric 60% dip in its X-ray flux of R~1 hr. The spectrum hardens during the dip. Inside the dip we observed an X-ray burst with a 2–10 keV peak flux of 7 10-10 erg/cm2s. The burst spectrum is black-body, and shows evidence of cooling during the burst decay. The discovery of a burst from 4U 1323-62 settles the classification of the source; the observation of a dip suggests that we may be able to measure its orbital period in the near future.  相似文献   

9.
NGC 4151 was observed four times in Nov. 83. The results indicate that: a) there exists a correlation between the X-ray and UV fluxes on the long term; b) the soft X-ray excess between 0.1 and 1 keV is probably steeper than expected from the leaky absorber model by Holt et al (1980); c)the spectral fit to the ME data, after correction for a soft component, yields =1,73±0.27, NH=(15.2±2.2)×1022 cm–2, E.W.(Fe line)=0.208±0.084 keV, and does not require a strong overabundance of Fe in the absorber. The relationship between NH and the strength of the broad emission lines is commented.  相似文献   

10.
The instrument configuration and performance characteristics of the X-ray imaging telescopes on EXOSAT are described. The instrument comprises two fully independent Wolter I imaging telescopes. Each telescope can be used in either of two principal modes: (i) an imaging mode with either a position sensitive proportional counter or a channel multiplier array plate in the focal plane, (ii) a spectrometer mode which features a 500 lines/mm and/or a 1000 lines/mm transmission grating as dispersive element.Preliminary results from the calibration of the fully integrated experiment indicate an ultimate angular resolution of 8.5 arc sec full width at half maximum or 17.5 arc sec half-power beam width. The ultimate wavelength resolution in the spectrometer mode ranges from 1Å for wavelengths below 50Å, to 5Å at wavelengths near 300Å.A method for estimating the telescope performance is given which reasonably accounts for the influence of the X-ray source spectrum and the degree of interstellar absorption on the counting statistics.A comparison between EXOSAT and the EINSTEIN telescope in terms of band width/resolution and minimum source detectability shows an enhanced potential for EXOSAT relative to EINSTEIN for sources with T 107K and low column densities (< 4 × 1020cm–2) and a reduced potential for sources with hard, or heavily cut-off, spectra.  相似文献   

11.
For spectral studies at energies 3keV, higher than those usually neglected by grazing incidence telescopes with high efficiency, freestanding, self-focussing, crystal arrays offer the most practical way to achieve adequate sensitivity through concentration. Such spectrometers can be designed for the entire range of energies that can be diffracted by crystals, 5oo eV to 104 eV, and, for energies below 3keV, can have sensitivities greater than or comparable with that of instruments at the focal plane of a large telescope.  相似文献   

12.
The primary scientific objective of the ROSAT mission is to perform the first all sky survey with an imaging X-ray telescope leading to an improvement in sensitivity by several orders of magnitude compared with previous surveys. Consequently a large number of new sources (> 105) will be discovered and located with an accuracy of 1 arcmin. After completion of the survey which will take about half a year the instrument will be used for detailed observations of selected targets.The X-ray telescope consists of a fourfold nested Wolter type I mirror system with 80 cm aperture and 240 cm focal length, and three focal plane detectors. In the baseline version these will be imaging proportional counters (0.1 – 2 keV) providing a field of view of 20 × 20.  相似文献   

13.
The Medium Energy Instrument on EXOSAT, although conceived as the main instrument for occultations, has been made sufficiently versatile to provide a significant advance over previous large area proportional counters when used for individual source studies of timing and spectra. The energy range is 1.2 to 50 keV, with E/E of 0.2 at 6 keV, sufficient to detect iron lines. The effective area of 1800 cm2 and narrow field of view (3/4° × 3/4°) make it suitable for the detailed study of sources down to the 0.3 mCrab confusion limit. The unique facility provided by EXOSAT, allowing uninterrupted observations of X-ray sources for periods of up to 80 hours, backed up by a high capacity data link and on-board processing, enables timing studies to be performed over the range from milliseconds to days. Sophisticated background discrimination techniques giving a rejection efficiency of99% will control the background count rate to a suitably low value in the environment of the 200,000 km orbit.  相似文献   

14.
We present the results of the spectral and timing analysis of an observation of GX9+1/4U1758-205 performed with the Medium Energy Experiment aboard EXOSAT. During our observation the source flux varied irregularly in time scales from minutes to hours. No periodic emission in the period range from 16 msec to 2000 sec was found with an upper limit of around 1% (3 ) for the pulsed fraction. The hardness ratio shows a correlated change with the flux intensity (Sco X-1 behaviour). The spectrum could be fitted by a double component model, a black body component (kT=1.16–1.26 keV) together with a thermal bremsstrahlung law (kT=13–15keV). The black-body temperature-black-body flux relation follows a Stefan Boltzmann law with RBB=15.3 km*D/10 kpc. No iron line was detected. The upper limit for the line equivalent width of a 6.7 keV iron emission line is 40 eV (1). The X-ray spectral behaviour of GX9+1 indicates, that this source belongs to the class of Low-Mass X-ray Binaries (LMXB).  相似文献   

15.
We report results from EXOSAT observations of the intermediate polar system 2A0526-328 (TV Col). The hard X-ray emission (2–8 keV) is modulated with a period of 1943 s, interpreted as the white-dwarf rotation period. Soft and hard X-ray emission show intensity minima, in phase with the orbital period of 0.2286 days; analysis of the hard X-ray spectra shows that these minima are caused by an extra low-energy absorption corresponding to a H column density of 4 × 1022 cm-2.  相似文献   

16.
The Solar Electron and Proton Telescope for the STEREO Mission   总被引:1,自引:0,他引:1  
The Solar Electron and Proton Telescope (SEPT), one of four instruments of the Solar Energetic Particle (SEP) suite for the IMPACT investigation, is designed to provide the three-dimensional distribution of energetic electrons and protons with good energy and time resolution. This knowledge is essential for characterizing the dynamic behaviour of CME associated and solar flare associated events. SEPT consists of two dual double-ended magnet/foil particle telescopes which cleanly separate and measure electrons in the energy range from 30–400 keV and protons from 60–7?000 keV. Anisotropy information on a non-spinning spacecraft is provided by the two separate telescopes: SEPT-E looking in the ecliptic plane along the Parker spiral magnetic field both towards and away from the Sun, and SEPT-NS looking vertical to the ecliptic plane towards North and South. The dual set-up refers to two adjacent sensor apertures for each of the four view directions: one for protons, one for electrons. The double-ended set-up refers to the detector stack with view cones in two opposite directions: one side (electron side) is covered by a thin foil, the other side (proton side) is surrounded by a magnet. The thin foil leaves the electron spectrum essentially unchanged but stops low energy protons. The magnet sweeps away electrons but lets ions pass. The total geometry factor for electrons and protons is 0.52 cm2?sr and 0.68 cm2?sr, respectively. This paper describes the design and calibration of SEPT as well as the scientific objectives that the instrument will address.  相似文献   

17.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

18.
The Transient Gamma-Ray Spectrometer (TGRS) to be flown aboard the WIND spacecraft is primarily designed to perform high resolution spectroscopy of transient -ray events, such as cosmic -ray bursts and solar flares over the energy range 25 keV to 8.2 MeV with an expected spectroscopic resolution of 3 keV at 1 MeV. The detector itself consists of a 215 cm3 high purityn-type Ge crystal kept at cryogenic temperatures by a passive radiative cooler. The geometric field of view defined by the cooler is 1.8 steradian. To avoid continuous triggers by soft solar events, a thin BeCu Sun-shield around the sides of the cooler has been provided. A passive Mo/Pb occulter, which modulates signals from within ±5° of the ecliptic plane at the spacecraft spin frequency, is used to identify and study solar flares, as well as emission from the galactic plane and center. Thus, in addition to transient event measurements, the instrument will allow the search for possible diffuse background lines and monitor the 511 keV positron annihilation radiation from the galactic center. In order to handle the typically large burst count rates, which can be in excess of 100 kHz, burst data are stored directly in an onboard 2.75 Mbit burst memory with an absolute timing accuracy of ±1.5 ms after ground processing. The memory is capable of storing the entire spectral data set of all but the largest bursts. WIND is scheduled to be launched on a Delta II launch vehicle from Cape Canaveral on November 1, 1994. After injection into a phasing orbit, the spacecraft will execute a double lunar swing-by before being moved into a controlled halo orbit about theL1 Lagrangian point (250R e towards the Sun). This will provide a 5 light-second light travel time with which to triangulate gamma-ray burst sources with Earth-orbiting systems, such as those on-board the Gamma-Ray Observatory (GRO). The response of instrument to transient -ray events such as GRB's and solar flares will be presented as well as the expected response to steady state point sources and galactic center line emission.  相似文献   

19.
The Polar Ionospheric X-ray Imaging Experiment (PIXIE)   总被引:2,自引:0,他引:2  
The Polar Ionospheric X-ray Imaging Experiment (PIXIE) is an X-ray multiple-pinhole camera designed to image simultaneously an entire auroral region from high altitudes. It will be mounted on the despun platform of the POLAR spacecraft and will measure the spatial distribution and temporal variation of auroral X-ray emissions in the 2 to 60 keV energy range on the day side of the Earth as well as the night. PIXIE consists of two pinhole cameras integrated into one assembly, each equipped with an adjustable aperture plate that allows an optimum number of nonoverlapping images to be formed in the detector plane at each phase of the satellite's eccentric orbit. The aperture plates also allow the pinhole size to be adjusted so that the experimenter can trade off spatial resolution against instrument sensitivity. In the principal mode of operation, one aperture plate will be positioned for high spatial resolution and the other for high sensitivity. The detectors consist of four stacked multiwire position-sensitive proportional counters, two in each of two separate gas chambers. The front chamber operates in the 2–12 keV energy range and the rear chamber in the 10–60 keV range. All of the energy and position information for each telemetered X-ray event is available on the ground. This enables the experimenter to adjust the exposure timepostfacto so that energy spectra of each X-ray emitting region can be independently accumulated. From these data PIXIE will provide, for the first time, global images of precipitated energetic electron spectra, energy inputs, ionospheric electron densities, and upper atmospheric conductivities.  相似文献   

20.
Goldsten  J. O.  McNutt  R. L.  Gold  R. E.  Gary  S. A.  Fiore  E.  Schneider  S. E.  Hayes  J. R.  Trombka  J. I.  Floyd  S. R.  Boynton  W. V.  Bailey  S.  Brückner  J.  Squyres  S. W.  Evans  L. G.  Clark  P. E.  Starr  R. 《Space Science Reviews》1997,82(1-2):169-216
An X-ray/gamma-ray spectrometer has been developed as part of a rendezvous mission with the near-Earth asteroid, 433 Eros, in an effort to answer fundamental questions about the nature and origin of asteroids and comets. During about 10 months of orbital operations commencing in early 1999, the X-ray/Gamma-ray Spectrometer will develop global maps of the elemental composition of the surface of Eros. The instrument remotely senses characteristic X-ray and gamma-ray emissions to determine composition. Solar excited X-ray fluorescence in the 1 to 10 keV range will be used to measure the surface abundances of Mg, Al, Si, Ca, Ti, and Fe with spatial resolutions down to 2 km. Gamma-ray emissions in the 0.1 to 10 MeV range will be used to measure cosmic-ray excited elements O, Si, Fe, H and naturally radioactive elements K, Th, U to surface depths on the order of 10 cm. The X-ray spectrometer consists of three gas-filled proportional counters with a collimated field of view of 5° and an energy resolution of 850 eV @ 5.9 keV. Two sunward looking X-ray detectors monitor the incident solar flux, one of which is the first flight of a new, miniature solid-state detector which achieves 600 eV resolution @ 5.9 keV. The gamma-ray spectrometer consists of a NaI(Tl) scintillator situated within a Bismuth Germanate (BGO) cup, which provides both active and passive shielding to confine the field of view and eliminate the need for a massive and costly boom. New coincidence techniques enable recovery of single and double escape events in the central detector. The NaI(Tl) and BGO detectors achieve energy resolutions of 8.7% and 14%, respectively @ 0.662 MeV. A data processing unit based on an RTX2010 microprocessor provides the spacecraft interface and produces 256-channel spectra for X-ray detectors and 1024-channel spectra for the raw, coincident, and anti-coincident gamma-ray modes. This paper presents a detailed overview of the X-ray/Gamma-ray Spectrometer and describes the science objectives, measurement objectives, instrument design, and shows some results from early in-flight data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号