首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The question of attitude control and elastic mode stabilization of a spacecraft (orbiter) with beam-tip-mass-type payloads is considered. A three-axis moment control law is derived to control the attitude of the spacecraft. The derivation of the control moments acting on the spacecraft does not require any information on the system dynamics. The control law includes a reference model and a dynamic compensator in the feedback path. For damping out the elastic motion excited by the slewing maneuver, an elastic mode stabilizer is designed. The stabilization is achieved by modal velocity feedback using force and torque actuators located at the payload end of the elastic beam. Collocated actuators and sensors provide robust stabilization. Simulation results are presented to show that rotational maneuvers and vibration stabilization can be accomplished in the closed-loop systems despite the presence of model uncertainty and disturbance torque in the system  相似文献   

2.
刚体飞行器大角度机动的反馈非线性化控制   总被引:2,自引:2,他引:0  
冯璐  龚诚  何长安 《飞行力学》1999,17(4):28-32
研究了刚体飞行器大角度的姿态控制问题,采用四元数描述刚体姿态,建立了刚体姿态运动的数学模型。基于反馈非线性化技术,通过构造李雅普诺夫函数推导出标量增益的线性控制律和矩阵增益的非线性控制律。两种控制律不需要知道系统参数,对模型误差具有鲁棒性。理论分析和仿真结果表明,所求控制律对闭环系统具有全局渐近稳定性。  相似文献   

3.
A model reference adaptive control law is presented for largeangle rotational maneuvers of spacecraft using reaction jets. It isassumed that the various parameters of the spacecraft arecompletely unknown, and unknown but bounded disturbancetorques are acting on the spacecraft. The controller includes adynamic system in the feedback path. Simulation results arepresented to show that fast, large angle rotational maneuvers can beperformed using the adaptive controller in spite of uncertainty inthe system.  相似文献   

4.
针对单推力航天器交会对接问题,提出一种轨迹规划及跟踪算法。首先,考虑到追踪航天器只沿本体X轴安装推力器,且推力方向固定,为了实现从起始位置转移至期望位置并满足姿态要求,基于三维螺旋线设计两阶段转移轨迹,根据初末位置以及末端速度方向要求,求解螺旋线参数。该螺旋线可以保证在初末速度方向固定情况下,曲率积分最小。其次,为了降低轨迹跟踪难度并减小初始时刻的位置跟踪控制力,需要将转移轨迹初始速度与追踪星X轴重合。传统螺旋线无法满足该约束条件。本文对传统螺旋线进行改进,提出一种旋转螺旋线轨迹设计方法。通过引入姿态旋转矩阵,将螺旋线在三维空间旋转,在不改变曲线形状的前提下满足初末位置及速度方向要求。然后,为了跟踪转移轨迹以及跟踪期望推力方向,提出基于CLF(Control Lyapunov Function)的滑模控制策略,当追踪星X轴与期望推力方向夹角较大时,采用CLF,保证最优性;当姿态误差收敛至滑模面附近时,切换为滑模控制,以提升系统鲁棒性。最后,通过仿真验证旋转螺旋线相比于传统螺旋线的优势。  相似文献   

5.
Addressed here is the problem of designing a dynamic controller capable of performing rest-to-rest maneuvers for flexible spacecraft, by using attitude measures. This controller does not need the knowledge of modal variables and spacecraft angular velocity. The absence of measurements of these variables is compensated by appropriate dynamics of the controller, which supplies their estimates. The Lyapunov technique is applied in the design of this dynamic controller. Possible source of instability of the controlled system in real cases are the influence of the flexibility on the rigid motion, the presence of disturbances acting on the structure, and parameter variations. In order to attenuate their effects and to damp out undesirable vibrations affecting the spacecraft attitude, distributed piezoelectric actuators are used. In fact, in presence of disturbances and/or parameter variation the proposed controller ensures an approximate solution of the control problem.  相似文献   

6.
A robust sliding-mode control law that deals with spacecraft attitude tracking problems is presented. Two important natural properties related to the spacecraft model of motion are discussed. It is shown that by using these properties and the second method of Lyapunov theory, the system stability in the sliding mode can be easily achieved. The success of the sliding-mode controller and its robustness relating to uncertainties are illustrated by an example of multiaxial attitude tracking maneuvers  相似文献   

7.
采用框架角受限控制力矩陀螺的航天器姿态机动控制   总被引:1,自引:0,他引:1  
以框架角受限的金字塔构型控制力矩陀螺(CMG)为执行机构,研究了航天器欧拉姿态机动控制问题.考虑控制力矩及航天器角速度约束等因素,对已有的姿态机动控制律进行了改进,使其能实现绕欧拉轴的大角度姿态机动.同时考虑力矩陀螺框架角受限情况,通过适当加入空转指令对框架角进行重构,设计了复合控制形式的控制力矩陀螺操纵律,并通过过渡...  相似文献   

8.
The problem of Earth-pointing attitude control for a spacecraft with magnetic actuators is addressed and a novel approach to the problem is proposed, which guarantees almost global closed loop stability of the desired relative attitude equilibrium for the spacecraft. Precisely, a proportional derivative (PD)-like state feedback control law is employed together with a suitable adaptation mechanism for the controller gain. Simulation results are presented, which illustrate the performance of the proposed control law  相似文献   

9.
A fault tolerant control (FTC) design technique against actuator stuck faults is investigated using integral-type sliding mode control (ISMC) with application to spacecraft attitude maneuvering control system. The principle of the proposed FTC scheme is to design an integral-type sliding mode attitude controller using on-line parameter adaptive updating law to compensate for the effects of stuck actuators. This adaptive law also provides both the estimates of the system parameters and external disturbances such that a prior knowledge of the spacecraft inertia or boundedness of disturbances is not required. Moreover, by including the integral feedback term, the designed controller can not only tolerate actuator stuck faults, but also compensate the disturbances with constant components. For the synthesis of controller, the fault time, patterns and values are unknown in advance, as motivated from a practical spacecraft control application. Complete stability and performance analysis are presented and illustrative simulation results of application to a spacecraft show that high precise attitude control with zero steady-error is successfully achieved using various scenarios of stuck failures in actuators.  相似文献   

10.
A nonlinear control law design based upon the backstepping approach is addressed for attitude maneuver control of spacecraft by momentum transfer (MT) in the presence of disturbance. For MT, a traditional method usually applies constant torque as an input, which tends to produce significant residual oscillation. Enhanced methods such as optimal control can somewhat reduce the residual oscillation, but may not be enough for minimum residual motion. Feedback linearization technique can drive the final nutation angle small enough, but it is rather sensitive to parameter uncertainty. The proposed method here takes advantage of nonlinear control approach with small steady-state nutation angle. Sensitivity about parameter uncertainties by feedback linearization can be reduced by the backstepping technique. Stability of the resulting control law is guaranteed by the Lyapunov stability theory. Boundedness of the control law is presented to validate practical merit of the proposed control law.  相似文献   

11.
Space robotics is regarded as one of the most impressing approaches for space debris removal missions. Due to the residual momentum of debris, it is essential to stabilize the base rapidly after capture. This paper presents a novel control strategy for stabilization of a space robot in postcapture considering actuator failures and bounded torques. In the control strategy, the motion of the manipulator is not regarded as a disturbance to the base; in contrast, it is utilized to compensate for the limitation of the control torques by means of an inverse dynamical model of the system. Different scenarios where actuators are external mechanisms or momentum exchange devices have been carried out, and for actuator failures, both single- and two-actuator failures have been considered. Regarding to the performance of actuators, control torques are bounded. In cases that either single or two actuators have failed, the base can be stabilized kinematically when actuators are external mechanisms, but can only be stabilized dynamically when only momentum exchange devices are used. Finally, a space robot with a seven-degree-of-freedom manipulator in postcapture is studied to verify the validity and feasibility of the proposed control scheme. Simulation results show that the whole system can be stabilized rapidly.  相似文献   

12.
使用变速控制力矩陀螺的航天器鲁棒自适应姿态跟踪控制   总被引:4,自引:1,他引:3  
刘军  韩潮 《航空学报》2008,29(1):159-164
 研究以变速控制力矩陀螺群(VSCMGs)为执行机构的航天器姿态跟踪问题。采用四元数描述姿态, 在姿态误差的描述中引入了现时姿态与期望姿态之间的方向余弦矩阵。考虑执行机构模型参数不确定和有外干扰的情况, 姿态误差动力学方程为多输入多输出(MIMO)的非线性系统。基于Lyapunov理论设计了鲁棒自适应控制器, 运用光滑投影算法避免了估计参数陷入奇异。仿真结果表明, 设计的鲁棒自适应控制律明显地缩小了姿态跟踪误差, 很好地解决了外部环境干扰和执行机构由于安装误差或机械磨损造成的轴承方向未对准的问题。  相似文献   

13.
利用变速控制力矩陀螺的航天器集成能量与姿态控制   总被引:1,自引:0,他引:1  
贾英宏  徐世杰 《航空学报》2007,28(3):647-653
 利用变速控制力矩陀螺(VSCMG)的航天器姿态与能量一体化控制问题。针对以VSCMG为姿态控制执行机构的刚体航天器设计了全局渐近稳定的姿态跟踪控制律。将VSCMG的框架角速度和转子角加速度作为控制输入向量设计操纵律。利用加权的最小范数解得到VSCMG的姿态控制输入向量,并用与之正交的控制输入向量来以给定的功率存储/释放能量。提出了同时表征力矩陀螺模式构型奇异和转子轮速平衡的混合指标函数。对控制自由度有冗余的系统,在混合指标函数的基础上利用梯度法构建了VSCMG的空转运动,以回避力矩陀螺模式的构型奇异,并同时减小转子转速差过大引起的转速饱和以及VSCMG零奇异的可能性。利用反馈转子动能的方法规划日照期间的储能功率,以维持系统长时间工作的能量平衡。基于某太阳同步轨道卫星的数值仿真结果验证了系统的有效性。  相似文献   

14.
The question of control of a class of nonlinear systems that can be decoupled by state-variable feedback is considered. Based on variable-structure system theory, a discontinuous control law is derived that accomplishes asymptotic decoupled output trajectory-following in the presence of uncertainty in the system. In the closed-loop system, the trajectories are attracted toward a chosen hypersurface in the state space and then slide along it. During the sliding phase the motion is insensitive to parameter variations. Based on this result, a control law for asymptotically decoupled control of roll angle, angle of attack, and sideslip in rapid, nonlinear maneuvers is derived. Simulation results are presented to show that large, simultaneous lateral and longitudinal maneuvers can be performed in spite of uncertainty in the stability derivatives  相似文献   

15.
自主近距空战中机动动作库及其综合控制系统   总被引:6,自引:0,他引:6  
针对自主近距空战中机动动作库的设计,采用定性与定量结合的方法对机动动作进行描述,以准确体现机动动作的几何形态和战术意义,构成含描述参数的机动动作库。对于机动动作的控制,提出了按照任务控制-运动学控制-动力学控制-被控对象划分的综合控制系统多层递阶结构。其中,机动动作控制器针对每种机动动作分别设计指令生成器,生成气流角和速率指令;气流角控制器采用含指令滤波的backstepping方法进行控制律设计。以半滚倒转和高速摇摇为例进行仿真验证,仿真结果表明,机动动作的描述参数能准确体现其几何形态和战术意义,并通过综合控制系统实现有效控制。  相似文献   

16.
The influence of various control systems of the orbital motion of a technological spacecraft on the level of microacceleration of its internal environment is simulated. Conclusions are drawn about the effectiveness of control systems with different actuators for realization of certain gravitationally sensitive processes onboard a spacecraft.  相似文献   

17.
陕晋军  刘暾 《航空学报》2002,23(1):62-65
 针对当代带大型挠性附件的空间飞行器,提出了分力合成主动振动抑制方法,并且分析了方法的鲁棒性。该方法可以保证挠性飞行器在实现指定的刚体运动的同时,抑制掉对系统影响较大的挠性振动模态,对频率不确定性的鲁棒性使得该方法易于工程实践。对于使用常幅值力矩喷气执行机构的航天器,设计了应用分力合成方法的时间—燃料最优机动控制律,数值仿真结果验证了方法的有效性。  相似文献   

18.
利用飞轮的航天器姿态跟踪与能量存储   总被引:4,自引:0,他引:4  
研究航天器集成能量与姿态控制系统中飞轮的控制律。系统中飞轮是姿态控制的执行机构,同时也是储能装置。首先利用Lyapunov方法设计了航天器姿态跟踪的反馈控制律,然后研究一种力矩形式的飞轮控制律。利用奇异值分解方法把飞轮组的控制力矩向量分解为3部分相互正交的力矩向量,一部分用来提供姿态控制力矩,一部分用来以给定的功率储能,另一部分完成轮速平衡以避免由于各飞轮轮速差异过大引起的飞轮饱和。提出了一种基于动能反馈的储能功率规划方案来保证系统的能量平衡,可以避免由于过剩能量引起的飞轮饱和。数值仿真结果验证了控制方案的有效性。  相似文献   

19.
《中国航空学报》2021,34(5):253-264
Pump controlled hydraulic actuators are wildly used in the aerospace industry owing to the advantages of energy-saving and integrated configurations. Negative loads may occur to actuators due to external force loads or the inertial force when the actuator decelerates significantly. Uncertain negative load working conditions may cause cavitation, actuator vibration, and even instability to the motion control if the actuator is without sufficient meter-out damping. Various types of hydraulic configuration schemes have been proposed to deal with negative loads of hydraulic actuators. However, few of them can simultaneously achieve energy saving and high control accuracy. This study proposes an energy-saving and accurate motion tracking strategy for a hydraulic actuator with uncertain negative loads. The actuator’s motion is driven by a servomotor pump, which gives full play to the advantage of energy-saving. The meter-out pressure is controlled by proportional valves to provide the optimized meter-out damping. The nonlinear adaptive robust control law is designed, which guarantees the control stability and achieve high tracking accuracy. An integrated direct/indirect adaptation law obtains satisfactory parameter estimations and model compensation for asymptotic motion tracking. Comparative experiments under different working conditions were performed to validate the advantages of the proposed control strategy.  相似文献   

20.
《中国航空学报》2016,(3):722-737
Agile satellites are of importance in modern aerospace applications,but high mobility of the satellites may cause them vulnerable to saturation during attitude maneuvers due to limited rating of actuators.This paper proposes a near minimum-time feedback control law for the agile satellite attitude control system.The feedback controller is formed by specially designed cascaded sub-units.The rapid dynamic response of the modified Bang–Bang control logic achieves the near optimal property and ensures the non-saturation properties on three-axis.To improve the dynamic performance,a model reference control strategy is proposed,in which the on-line near optimal attitude maneuver path is generated by the cascade controller and is then tracked by a nonlinear back-stepping controller.Furthermore,the accuracy and the robustness of the control system are achieved by momentum-based on-line inertial identification.The rapid attitude maneuvering can be applied for tasks including the move to move case.Numerical simulations are conducted to verify the effectiveness of the proposed control strategy in terms of the saturation-free property and rapidness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号