首页 | 本学科首页   官方微博 | 高级检索  
     检索      

含内热源的多孔方腔流热耦合非正交 MRT-LBM数值模拟
引用本文:张莹,黄逸宸,陈岳,马明,李培生,王昭太.含内热源的多孔方腔流热耦合非正交 MRT-LBM数值模拟[J].北京航空航天大学学报,2019,45(9):1700-1712.
作者姓名:张莹  黄逸宸  陈岳  马明  李培生  王昭太
作者单位:南昌大学 机电工程学院,南昌,330031;美国圣母大学 航空机械系, 南本德 46556
基金项目:国家自然科学基金51566012国家自然科学基金11562011江西省自然科学基金20181BAB206031江西省研究生创新专项基金YC2019-S016
摘    要:针对含内热源的多孔方腔内自然对流现象问题,采用非正交多弛豫时间(MRT)格子Boltzmann方法进行了研究。分析了Rayleigh数(104 ≤ Ra ≤ 106)、内热源布局方式(水平、垂直及对角布局)、内热源几何尺寸大小(A=1/16,1/8,3/16,1/4)及两内热源间的间距(S=5/64,13/64,21/64)对流动传热的影响。结果表明:在Ra=104,105和S=5/64的情况下,任意内热源几何尺寸,内热源采用对角布局方式可获得更好的对流换热效果;在Ra=105,106和S=13/64,21/64的情况下,水平布局方式更优;在内热源采用水平布局,Ra=104的情况下,任意内热源几何尺寸,对流换热效果均随着内热源间距的增大而增强;而随着Ra增大,内热源几何尺寸减小,对流换热效果随着内热源间距的增大先增大后减小,而后随着内热源间距增大其对流换热效果减弱;对角布局也有相似规律,在其他条件一致的情况下,随着内热源几何尺寸的增加,其对流换热效果增强。 

关 键 词:多孔方腔  内热源  自然对流  Nusselt数  多弛豫时间(MRT)  Boltzmann模型
收稿时间:2019-01-02

Non-orthogonal multiple-relaxation-time lattice Boltzmann method for numerical simulation of thermal coupling with porous square cavity flow containing internal heat source
Institution:1.School of Mechanical & Electrical Engineering, Nanchang University, Nanchang 330031, China2.Department of Aerospace and Mechanical Engineering, University of Notre Dame, South Bend 46556, USA
Abstract:In this paper, in order to solve the problem of natural convection in a porous square cavity containing an internal heat source, the non-orthogonal multiple-relaxation-time (MRT) lattice Boltzmann method was used. The influence of the value of Rayleigh number(104 ≤ Ra ≤ 106), internal heat source layout (horizontal, vertical and diagonal layout), internal heat source size (A=1/16, 1/8, 3/16, 1/4), and spacing (S=5/64, 13/64, 21/64) between two internal heat sources on convective heat transfer was analyzed. The results indicate that in the case of Ra=104, 105 and S=5/64, and the internal heat source is of any size, it can obtain better heat transfer by adopting the layout of diagonal; when Ra=105, 106 and S=13/64, 21/64, horizontal is better. In horizontal layout of the internal heat source, at Ra=104, the convection heat transfer effect in any internal heat source size is enhanced as the internal heat source spacing increases. However, as Ra increases, and internal heat source size decreases, the convective heat transfer effect first increases and then decreases with the increase of internal heat source space; then its effect decreases as internal heat source space increases. The layout of diagonal is in a similar situation. When other conditions are the same, the convective heat transfer effect increases with the increase of internal heat source size. 
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号