留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含内热源的多孔方腔流热耦合非正交MRT-LBM数值模拟

张莹 黄逸宸 陈岳 马明 李培生 王昭太

张莹, 黄逸宸, 陈岳, 等 . 含内热源的多孔方腔流热耦合非正交MRT-LBM数值模拟[J]. 北京航空航天大学学报, 2019, 45(9): 1700-1712. doi: 10.13700/j.bh.1001-5965.2018.0781
引用本文: 张莹, 黄逸宸, 陈岳, 等 . 含内热源的多孔方腔流热耦合非正交MRT-LBM数值模拟[J]. 北京航空航天大学学报, 2019, 45(9): 1700-1712. doi: 10.13700/j.bh.1001-5965.2018.0781
ZHANG Ying, HUANG Yichen, CHEN Yue, et al. Non-orthogonal multiple-relaxation-time lattice Boltzmann method for numerical simulation of thermal coupling with porous square cavity flow containing internal heat source[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1700-1712. doi: 10.13700/j.bh.1001-5965.2018.0781(in Chinese)
Citation: ZHANG Ying, HUANG Yichen, CHEN Yue, et al. Non-orthogonal multiple-relaxation-time lattice Boltzmann method for numerical simulation of thermal coupling with porous square cavity flow containing internal heat source[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1700-1712. doi: 10.13700/j.bh.1001-5965.2018.0781(in Chinese)

含内热源的多孔方腔流热耦合非正交MRT-LBM数值模拟

doi: 10.13700/j.bh.1001-5965.2018.0781
基金项目: 

国家自然科学基金 51566012

国家自然科学基金 11562011

江西省自然科学基金 20181BAB206031

江西省研究生创新专项基金 YC2019-S016

详细信息
    作者简介:

    张莹  女, 博士, 教授, 博士生导师。主要研究方向:复杂热流场模拟

    李培生  男, 博士, 教授, 博士生导师。主要研究方向:固体废物、生物质、煤的清洁燃烧及资源化利用

    通讯作者:

    李培生, E-mail: nucdns1995z@163.com

  • 中图分类号: TB61+1

Non-orthogonal multiple-relaxation-time lattice Boltzmann method for numerical simulation of thermal coupling with porous square cavity flow containing internal heat source

Funds: 

National Natural Science Foundation of China 51566012

National Natural Science Foundation of China 11562011

Natural Science Foundation of Jiangxi Province 20181BAB206031

Graduate Innovation Special Foundation of Jiangxi Province YC2019-S016

More Information
  • 摘要:

    针对含内热源的多孔方腔内自然对流现象问题,采用非正交多弛豫时间(MRT)格子Boltzmann方法进行了研究。分析了Rayleigh数(104Ra ≤ 106)、内热源布局方式(水平、垂直及对角布局)、内热源几何尺寸大小(A=1/16,1/8,3/16,1/4)及两内热源间的间距(S=5/64,13/64,21/64)对流动传热的影响。结果表明:在Ra=104,105S=5/64的情况下,任意内热源几何尺寸,内热源采用对角布局方式可获得更好的对流换热效果;在Ra=105,106S=13/64,21/64的情况下,水平布局方式更优;在内热源采用水平布局,Ra=104的情况下,任意内热源几何尺寸,对流换热效果均随着内热源间距的增大而增强;而随着Ra增大,内热源几何尺寸减小,对流换热效果随着内热源间距的增大先增大后减小,而后随着内热源间距增大其对流换热效果减弱;对角布局也有相似规律,在其他条件一致的情况下,随着内热源几何尺寸的增加,其对流换热效果增强。

     

  • 图 1  物理模型

    Figure 1.  Physical model

    图 2  流线图与等温线图比较(Ra=105Da=10-2Pr=1.0,ε=0.4)

    Figure 2.  Comparison of streamlines and isotherms (Ra=105, Da=10-2, Pr=1.0, ε=0.4)

    图 3  不同Raleigh数、内热源几何尺寸大小及间距下布局方式对热壁面平均努塞尔数的影响

    Figure 3.  Influence of layout mode on heated wall average Nusselt number with different Rayleigh numbers, heat source sizes and spacing

    图 4  不同Raleigh数、内热源几何尺寸大小及间距下布局方式对冷壁面平均努塞尔数的影响

    Figure 4.  Influence of layout mode on cold wall average Nusselt number with different Rayleigh numbers, heat source sizes and spacing

    图 5  Ra=104A=3/16,S=21/64下3种布局方式的流线图与等温线图

    Figure 5.  Streamlines and isotherms for three layout modes at Ra=104, A=3/16, S=21/64

    图 6  Ra=105A=1/8,S=5/64下3种布局方式的流线图与等温线图

    Figure 6.  Streamlines and isotherms for three layout modes at Ra=105, A=1/8, S=5/64

    图 7  Ra=106A=1/16,S=21/64下3种布局方式的流线图与等温线图

    Figure 7.  Streamlines and isotherms for three layout modes at Ra=106, A=1/16, S=21/64

    图 8  水平布局时,不同Raleigh数、内热源几何尺寸大小及间距对热壁面平均努塞尔数的影响

    Figure 8.  Influence of different Rayleigh numbers, heat source sizes and spacing on heated wall average Nusselt number in horizontal layout

    图 9  水平布局时,不同Raleigh数、内热源几何尺寸大小及间距下冷壁面局部努塞尔数的分布

    Figure 9.  Distribution of local Nusselt number on cold wall with different Rayleigh numbers, heat source sizes and spacing in horizontal layout

    图 10  水平布局时,Ra=104A=1/4,S=5/64,13/64,21/64下的流线图与等温线图

    Figure 10.  Streamlines and isotherms for horizontal layout at Ra=104, A=1/4, S=5/64, S=13/64, S=21/64

    图 11  水平布局时,Ra=106A=1/8,S=5/64,13/64,21/64下的流线图与等温线图

    Figure 11.  Streamlines and isotherms for horizontal layout at Ra=106, A=1/8, S=5/64, S=13/64, S=21/64

    图 12  对角布局时,不同Raleigh数、内热源几何尺寸大小及间距下对热壁面平均努塞尔数的影响

    Figure 12.  Influence of different Rayleigh numbers, heat source sizes and spacing on heated wall average Nusselt number in diagonal layout

    图 13  对角布局时,不同Raleigh数、热源几何尺寸大小及间距下冷壁面局部努塞尔数的分布

    Figure 13.  Distribution of local Nusselt number on cold wall with different Rayleigh numbers, heat source sizes and spacing in diagonal layout

    图 14  对角布局时,Ra=106A=1/16,S=5/64,13/64,21/64下的流线图与等温线图

    Figure 14.  Streamlines and isotherms for diagonal layout at Ra=106, A=1/16, S=5/64, S=13/64, S=21/64

    表  1  热壁面平均努塞尔数比较

    Table  1.   Comparison of average Nusselt number at hot sidewall

    DaRaPrεNuavg相对
    误差/%
    本文文献[15]
    10-21031.00.41.033 21.012.30
    10-21041.00.41.430 21.4081.58
    10-21051.00.43.033 42.9831.69
    10-41061.00.62.747 62.7250.83
    10-41071.00.99.257 99.2020.61
    下载: 导出CSV
  • [1] BASAK T, ROY S, PAUL T, et al.Natural convection in a square cavity filled with a porous medium:Effects of various thermal boundary conditions[J].International Journal of Heat and Mass Transfer, 2006, 49(7-8):1430-1441. doi: 10.1016/j.ijheatmasstransfer.2005.09.018
    [2] KHASHAN S A, AL-AMIRI A M, POP I.Numerical simulation of natural convection heat transfer in a porous cavity heated from below using a non-Darcian and thermal non-equilibrium model[J].International Journal of Heat and Mass Transfer, 2006, 49(5-6):1039-1049. doi: 10.1016/j.ijheatmasstransfer.2005.09.011
    [3] SAEID N H.Natural convection in porous cavity with sinusoidal bottom wall temperature variation[J].International Communications in Heat and Mass Transfer, 2005, 32(3-4):454-463. doi: 10.1016/j.icheatmasstransfer.2004.02.018
    [4] ROY S, BASAK T.Finite element analysis of natural convection flows in a square cavity with non-uniformly heated wall(s)[J].International Journal of Engineering Science, 2005, 43(8):668-680. http://www.sciencedirect.com/science/article/pii/S0020722505000492
    [5] 何雅玲, 王勇, 李庆.格子Bolizmann方法的理论及应用[M].北京:科学出版社, 2009.

    HE Y L, WANG Y, LI Q.Lattice Boltzmann method:Theory and applications[M].Beijing:Science Press, 2009(in Chinese).
    [6] 郭照立.格子Boltzmann方法的原理及应用[M].北京:科学出版社, 2009.

    GUO Z L.Theory and applications of lattice Boltzmann method[M].Beijing:Science Press, 2009(in Chinese).
    [7] ZHAO C Y, DAI L N, TANG G H, et al.Numerical study of natural convection in porous media(metals) using lattice Boltzmann method(LBM)[J].International Journal of Heat and Fluid Flow, 2010, 31(5):925-934. doi: 10.1016/j.ijheatfluidflow.2010.06.001
    [8] DIXIT H N, BABU V.Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method[J].International Journal of Heat and Mass Transfer, 2006, 49(3):727-739. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=93343a12cee32c91e91561f5593fdaf7
    [9] LIU Q, HE Y L, LI Q, et al.A multiple-relaxation-time lattice Boltzmann model for convection heat transfer in porous media[J].International Journal of Heat and Mass Transfer, 2014, 73:761-775. doi: 10.1016/j.ijheatmasstransfer.2014.02.047
    [10] LIU Q, HE Y L, DAWSON K A, et al.Lattice Boltzmann simulations of convection heat transfer in porous media[J].Physica A:Statistical Mechanics and Its Applications, 2017, 465:742-753. doi: 10.1016/j.physa.2016.08.010
    [11] LAM P A K, PRAKASH K A.A numerical study on natural convection and entropy generation in a porous enclosure with heat sources[J].International Journal of Heat and Mass Transfer, 2014, 69(1):390-407. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=52838334d91e11bd1e3850b1189d4498
    [12] 李培生, 孙金丛, 张莹, 等.内置高温体倾斜多孔腔体中自然对流的LBM模拟[J].哈尔滨工程大学学报, 2018, 39(6):1073-1080. http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201806016

    LI P S, SUN J C, ZHANG Y, et al.Lattice Boltzmann simulation of natural convection in an inclined porous cavity with a hot square obstacle[J].Journal of Harbin Engineering University, 2018, 39(6):1073-1080(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201806016
    [13] SIAVASHI M, BORDBAR V, RAHNAMA P.Heat transfer and entropy generation study of non-Darcy double-diffusive natural convection in inclined porous enclosures with different source configurations[J].Applied Thermal Engineering, 2017, 110:1462-1475. doi: 10.1016/j.applthermaleng.2016.09.060
    [14] SELIMEFENDIGIL F.Numerical investigation and POD-based interpolation of natural convection cooling of two heating blocks in a square cavity[J].Arabian Journal for Science and Engineering, 2014, 39(3):2235-2250. doi: 10.1007/s13369-013-0814-8
    [15] NITHIARASU P, SEETHARAMU K N, SUNDARARAJAN T.Natural convective heat transfer in a fluid saturated variable porosity medium[J].International Journal of Heat and Mass Transfer, 1997, 40(16):3955-3967. doi: 10.1016/S0017-9310(97)00008-2
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  533
  • HTML全文浏览量:  70
  • PDF下载量:  477
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-02
  • 录用日期:  2019-03-22
  • 网络出版日期:  2019-09-20

目录

    /

    返回文章
    返回
    常见问答