首页 | 本学科首页   官方微博 | 高级检索  
     检索      

带前缘涡轮动叶内冷通道流动换热数值模拟
引用本文:刘裕盛,吴宏,徐国强.带前缘涡轮动叶内冷通道流动换热数值模拟[J].航空动力学报,2012,27(4):837-845.
作者姓名:刘裕盛  吴宏  徐国强
作者单位:北京航空航天大学能源与动力工程学院航空发动机气动热力国家级重点实验室,北京,100191
基金项目:国家自然科学基金(50976008)
摘    要:在静止条件下,通过数值模拟的方法对接近真实的带前缘涡轮工作叶片腔模型内的流动与换热进行了分析.结果表明:腔内斜肋引发的三维涡对换热产生了巨大的影响,在一倍肋高范围内, Y-Z 和 X-Y 平面上都出现了肋后涡,使得此处传热系数降低;在 X-Z 平面上,第2通道产生一对方向相反的涡,第3通道只产生一个涡.两个通道中的涡都占据整个横截面,这些涡增加了通道流阻.冲击和气膜流动主导了前缘通道内的换热,冲击产生的一对涡加强了流动掺混,促进了前缘吸、压力面上的换热,而高速的气膜出流推动了这一过程.相同流量工况下,第2通道带肋表面的平均换热和局部换热都是最好的,而光滑的第1通道总压降最小,综合换热性能在各个通道中最高.随着雷诺数的增加,各通道吸、压力面的局部换热和平均换热都增强,但压降系数变化不大.

关 键 词:涡轮叶片  前缘  肋化通道  冲击冷却  气膜    换热
收稿时间:2011/5/13 0:00:00
修稿时间:2011/10/10 0:00:00

Numerical simulation of flow and heat transfer in internal cooling blade channel with leading-edge
LIU Yu-sheng,WU Hong and XU Guo-qiang.Numerical simulation of flow and heat transfer in internal cooling blade channel with leading-edge[J].Journal of Aerospace Power,2012,27(4):837-845.
Authors:LIU Yu-sheng  WU Hong and XU Guo-qiang
Institution:National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics, School of Jet Propulsion, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics, School of Jet Propulsion, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics, School of Jet Propulsion, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract:Flow and heat transfer in approximate real model of blade channel with leading-edge was analyzed by numerical simulation at static condition.The results show:three-dimensional vortices introduced by inclined ribs lead to a great impact on heat transfer in the cavity.Within one rib height range,vortices after ribs occur in both Y-Z and X-Y cross-sections,which makes heat transfer coefficients here in decrease.In X-Z cross-section,the second channel produces a pair of vortices in the opposite direction while the third channel results in just one vortex.Vortices in these two channels occupy the whole cross-section and increase flow resistance.The impingement and film flow play a leading role in heat transfer in leading-edge channel where vortex pair induced by impingement enhances flow mixing and stimulates heat transfer on suction and pressure sides,while high-speed film flow promotes this process.In the same flow conditions,average and local heat transfer on ribbed surface of the second channel perform the best,but the smooth first channel owns the highest comprehensive heat transfer performance due to its minimum total pressure drop in all the channels.With the increasing Reynolds number,local and average heat transfer on suction and pressure sides in each channel are enhanced in contrast with little change in the pressure drop coefficient.
Keywords:turbine blade  leading-edge  ribbed channel  impingement cooling  film  vortices  heat transfer
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号