首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   9篇
  国内免费   3篇
航空   32篇
航天技术   3篇
综合类   9篇
航天   20篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   3篇
  2011年   6篇
  2010年   5篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2000年   1篇
  1998年   1篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
通过对近几年箭体阀门产品中出现的多余物问题进行统计分析,归纳箭体阀门产品产生多余物的原因,在设计、生产和试验等环节提出控制多余物的措施和建议。  相似文献   
2.
Marrota 科技管理实业有限公司已设计出一种独特的高性能的锁紧隔离阀,称做双锁隔离阀,该阀能可靠地隔离可贮存推进剂和具有一定压力的气体,而且可以做为推进器阀门在长时间持续燃烧的电弧喷气发动机上使用,如电加热推进装置和固体推进装置。或者在串联复式开关推进装置中做上游阀门.Marrota 双锁致动器采用稀土永磁材料,阀门在锁紧位置(关闭和打开)不需要继续通电。该双锁阀门的特点是无滑动配合,电位置指示器和累积的背压卸荷,阀门结构简单、价格低廉,本文阐述了该阀新颖的设计方法.  相似文献   
3.
4.
5.
基于厂方对供热系统的要求,根据供热建筑物、机房和可利用设施的实际情况,采用一台换热器,通过阀门的切换,实现了供暖和供热水的分段运行。将蒸汽发生器的进水与系统补水有机地整合为一个系统,有效地解决了机房面积过小的实际困难。利用自来水的压力和热水箱与浴室的高差解决了热水供应的实际问题。  相似文献   
6.
闭式布雷顿循环是未来空间大功率热电转换的有效途径,而旁路调节是实现系统快速功率调节和转速控制的有效手段。通过对标美国普罗米修斯计划中的热电转换系统参数,进行了涡轮、压气机的气动设计和换热器性能计算,获得了包括组件特性、管道布局的热电转换系统动态仿真模型。基于该动态模型,对旁通阀不同响应时间、开度对系统功率、转速和循环温度、压力等参数影响进行仿真研究。空间闭式布雷顿循环系统在旁通阀开启后,系统功率和转速快速下降,其中功率出现了超调现象;循环高压侧压力下降且低压侧压力上升;回热器热侧入口温度增加而冷侧入口温度下降,热应力进一步提高。系统容积的提高,在一定程度上可以降低系统对旁通阀调节的敏感性。  相似文献   
7.
燃烧加热器气动阀门阀后压力的模糊控制   总被引:1,自引:0,他引:1  
燃烧加热器是超燃冲压发动机研究的主要试验设备。试验气体包括氢气、氧气、空气和氮气等,需要调节控制的参数为试验气体的压力、流量。根据燃烧加热器的控制需求,设计了一套以工业控制计算机为核心的实用并且兼顾可靠性要求的控制系统。采用自适应Fuzzy-P1的控制方法对试验气体压力进行压力控制,在常规PI控制器的基础上,对控制器的比例系数Kp和积分系数Ki进行在线调整,使控制器既满足响应快、超调小、稳定时间短的要求,又提高稳态控制精度,取得了较好的控制效果。  相似文献   
8.
为了对发动机燃烧不稳定性进行被动控制,利用亥姆赫兹声学共振器原理,设计一种声学阀门,当一个管道侧面安装的亥姆赫兹共振器的空腔壁面是柔软的时候,声学阀门的性能与频率就没有很强的关系,从而实现由于热声学不稳定带来的压力和热释放导致的不稳定燃烧进行被动控制。阀门的功能是让声音通过,但它必须阻止时间平均意义上的流动。本文对带有这种装置的热声学特征根问题给出数值解。结果显示声学阀门对燃烧室内的驻波结构造成很大改变,进而可以消除不稳定的特征根模态。只要阀门具备足够的尺寸,这种效果可以在任意的线性火焰声学特性中广泛实现。  相似文献   
9.
10.
本文设计了PLC控制的双控阀门实验平台。重点介绍了PLC控制的双控阀门的程序设计,包括无联锁关系和有联锁关系两类阀门的程序设计,并简要介绍了双控阀门控制实验平台的组成和上层监控系统的设计。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号