首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
航空   1篇
航天技术   12篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2013年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  1998年   1篇
  1994年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
The photometric-magnetic dynamical model handles the evolution of an individual sunspot as an autonomous nonlinear, though integrable, dynamical system. One of its consequences is the prediction of an upper limit of the sunspot areas. This upper limit is analytically expressed by the model parameters, while its calculated value is verified by the observational data. In addition, an upper limit for the magnetic strength inside the sunspot is also predicted, and then, we obtain the following significant result: The upper limit of the total magnetic flux in an active region is found to be of about 7.23 × 1023 Mx, namely, phenomenologically equal to the magnetic flux concentrated in the totality of the granules of the quiet Sun, having a typical maximum magnetic strength of about 12G. Therefore, the magnetic flux concentrated in an active region cannot exceed the magnetic flux concentrated in the photosphere as a whole.  相似文献   
2.
Solar and stellar activity is a result of complex interaction between magnetic field, turbulent convection and differential rotation in a star’s interior. Magnetic field is believed to be generated by a dynamo process in the convection zone. It emerges on the surface forming sunspots and starspots. Localization of the magnetic spots and their evolution with the activity cycle is determined by large-scale interior flows. Thus, the internal dynamics of the Sun and other stars hold the key to understanding the dynamo mechanism and activity cycles. Recently, significant progress has been made for modeling magnetohydrodynamics of the stellar interiors and probing the internal rotation and large-scale dynamics of the Sun by helioseismology. Also, asteroseismology is beginning to probe interiors of distant stars. I review key achievements and challenges in our quest to understand the basic mechanisms of solar and stellar activity.  相似文献   
3.
The analysis of turbulent processes in sunspots and pores which are self-organizing long-lived magnetic structures is a complicated and not yet solved problem. The present work focuses on studying such magneto-hydrodynamic (MHD) formations on the basis of flicker-noise spectroscopy using a new method of multi-parametric analysis. The non-stationarity and cross-correlation effects taking place in solar activity dynamics are considered. The calculated maximum values of non-stationarity factor may become precursors of significant restructuring in solar magnetic activity. The introduced cross-correlation functions enable us to judge synchronization effects between the signals of various solar activity indicators registered simultaneously.  相似文献   
4.
The paper presents a numerical analysis of Wolf sunspot numbers, with emphasis being laid on the asymmetry of the cyclic variation. To that purpose we have used the standard tables of monthly numbers and, in addition to the Fourier transform, we have done an overall analysis of the trend around each maximum. Many of these maxima present an asymmetry, and sometimes the presence of two maxima is evident. The non-linear RLC van der Pol model suggested by Polygiannakis and Moussas [Polygiannakis, J.M., Moussas, X. A nonlinear RLC solar cycle model. Solar Physics 163, 193–203, 1996] can explain many features of the observed asymmetries. Our analysis shows that a consistent deconvolution in two Gaussian curves is possible for each maximum. We may presume that the observed sunspot time series includes a hidden complex structure. This could give some hints of a behavior typical for coupled non-linear oscillators. It is a matter of further interpretations. whether such “oscillators” are just a simple approximation of a much complex phenomenon, or are a sign of another more physically based model like the dynamo model (or other models).  相似文献   
5.
After a polar reversal in one hemisphere the Sun has two polar caps of the same sign, leaving it in a kind of monopolar state. It may take months before a polar reversal occurs in the other hemisphere. The situation may have been extreme in the Maunder Minimum where the northern hemisphere most probably did not have polar reversals during several cycles, while the southern hemisphere may have had some. This may affect the interplanetary field and thus the cosmic rays reaching the Earth. Using the relation between the Wolf number and the speed of the global magnetic field regions the yearly mean Wolf number has to exceed 40 in order to have polar reversals, hence per hemisphere we expect that it must exceed 20. This may be used to give a definition of a deep minimum.  相似文献   
6.
The effects of the energetic phenomena of the Sun, flares and coronal mass ejections (CMEs) on the Earth’s ionosphere–magnetosphere, through the solar wind, are the sources of the geomagnetic disturbances and storms collectively known as Space Weather. The research on the influence of Space Weather on biological and physiological systems is open. In this work we study the Space Weather   impact on Acute Coronary Syndromes (ACS) distinguishing between ST-segment elevation acute coronary syndromes (STE–ACS) and non-ST-segment elevation acute coronary syndromes (NSTE–ACS) cases. We compare detailed patient records from the 2nd Cardiologic Department of the General Hospital of Nicaea (Piraeus, Greece) with characteristics of geomagnetic storms (DSTDST), solar wind speed and statistics of flares and CMEs which cover the entire solar cycle 23 (1997–2007). Our results indicate a relationship of ACS to helio-geomagnetic activity as the maximum of the ACS cases follows closely the maximum of the solar cycle. Furthermore, within very active periods, the ratio NSTE–ACS to STE–ACS, which is almost constant during periods of low to medium activity, changes favouring the NSTE–ACS. Most of the ACS cases exhibit a high degree of association with the recovery phase of the geomagnetic storms; a smaller, yet significant, part was found associated with periods of fast solar wind without a storm.  相似文献   
7.
The ultraviolet spectrum of a redshifted plasma flow appearing over a sunspot observed during the first flight of the High Resolution Telescope Spectrograph (HRTS I) is analysed, and interpreted as a radiatively cooling plasma. For most of the lines emitted from this plasma, the assumption of ionization equilibrium during the cooling is good. However for He II (and other ions with a single electron outside of closed shells), this is not the case. Integrating differential equations for the various ionization fractions of helium and the temperature allows an approximate determination of the abundance of helium relative to other elements whose lines appear in the spectrum of the plasma flow.  相似文献   
8.
The international reference ionosphere, IRI, and its extension to plasmasphere, IRI-Plas, models require reliable prediction of solar and ionospheric proxy indices of solar activity for nowcasting and forecasting of the ionosphere parameters. It is shown that IRI prediction errors could increase for the F2 layer critical frequency foF2 and the peak height hmF2 due to erroneous predictions of the ionospheric global IG index and the international sunspot number SSN1 index on which IRI and IRI-Plas models are built. Regression relation is introduced to produce daily SSN1 proxy index from new time series SSN2 index provided from June 2015, after recalibration of sunspots data. To avoid extra errors of the ionosphere model a new solar activity prediction (SAP) model for the ascending part of the solar cycle SC25 is proposed which expresses analytically the SSN1 proxy index and the 10.7-cm radio flux F10.7 index in terms of the phase of the solar cycle, Φ. SAP model is based on monthly indices observed during the descending part of SC24 complemented with forecast of time and amplitude for SC25 peak. The strength of SC25 is predicted to be less than that of SC24 as shown with their amplitudes for eight types of indices driving IRI-Plas model.  相似文献   
9.
Using the recently converted to digital format heliophysics catalogues of the Ebro Observatory published in the 1930s, we analyse simultaneously the temporal variation and asymmetry of two different solar structures located at different layers of the solar atmosphere: sunspots and solar plages. In particular, we do the research for all the types of sunspots and plages, including the daily and relative frequencies over the solar cycle. The data were catalogued using the sunspot Cortie classification and a solar plage classification scheme proposed by the Ebro Observatory, which group the phenomena by size and shape. For all types of both sunspots and plages, we observe a decrease in their frequency up to the end of solar cycle 16 and an increase over the beginning of solar cycle 17. Furthermore, we note that small sunspot groups are more likely to happen than bigger groups, although single big spots dominate near the solar minimum. The daily frequency of solar plage occurrences shows that there is not a dominance of compact or scattered solar plages. The North-South occurrence distribution of every type in both sunspots and solar plages shows an asymmetry during the solar cycle: in its declining phase, such asymmetry is directed to the north, while in the beginning of a new cycle is directed to the south.  相似文献   
10.
We analyze the Greenwich catalog data on areas of sunspot groups of last thirteen solar cycles. Various parameters of sunspots are considered, namely: average monthly smoothed areas, maximum area for each year and equivalent diameters of groups of sunspots. The first parameter shows an exceptional power of the 19th cycle of solar activity, which appears here more contrastively than in the numbers of spots (that is, in Wolf’s numbers). It was found that in the maximum areas of sunspot groups for a year there is a unique phenomenon: a short and high jump in the 18th cycle (in 1946–1947) that has no analogues in other cycles. We also studied the integral distributions for equivalent diameters and found the following: (a) the average value of the index of power-law approximation is 5.4 for the last 13 cycles and (b) there is reliable evidence of Hale's double cycle (about 44?years). Since this indicator reflects the dispersion of sunspot group diameters, the results obtained show that the convective zone of the Sun generates embryos of active regions in different statistical regimes which change with a cycle of about 44?years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号