首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Statistical analyses of the influence of Solar and geomagnetic activity, sector structure of the interplanetary magnetic field and galactic cosmic ray Forbush effects on car accident events in Poland for the period of 1990-1999 have been carried out. Using auto-correlation, cross-correlation, spectral analyses and superposition epochs methods it has been shown that there are separate periods when car accident events have direct correlation with Ap index of the geomagnetic activity, sector structure of the interplanetary magnetic field and Forbush decreases of galactic cosmic rays. Nevertheless, the single-valued direct correlation is not possible to reveal for the whole period of 1990-1999. Periodicity of 7 days and its second harmonic (3.5 days) has been reliably revealed in the car accident events data in Poland for the each year of the period 1990-1999. It is shown that the maximum car accident events take place in Poland on Friday and practically does not depend on the level of solar and geomagnetic activities.  相似文献   

2.
We present an analysis of the time-intensity profiles of 25 solar energetic proton events at 18.2 MeV, modelled by fitting an analytical function form (a modified Weibull function) to the observed intensities. Additionally relying on previous work that characterized the magnetic connectivity between the event-related solar flare and the observer in these events with three angular parameters, we investigate the fit function parameters, the connectivity parameters, and the iron-to-carbon ratio of the events for dependencies and correlations. We find that the fit parameter controlling the basic shape of the profile (parameter a) is not clearly dependent on the connectivity parameters or the Fe/C ratio, suggesting that the profile shapes of neither well and weakly connected nor generally “impulsive” and “gradual” events differ systematically during the early stages of the event at 1 AU. In contrast, the time scaling of the fit function (parameter b) is at least moderately correlated with both the magnetic connectivity parameters and the Fe/C ratio, in that well-connected and iron-rich events are typically shorter in relative duration than weakly connected and nominal-abundance events; intensity rise times display a similar correlation with the connectivity parameters. We interpret the former result as following from the combined effect of various transport processes acting on the particles in interplanetary space, while the latter is essentially consistent with established knowledge regarding the observed dependence of the time-intensity profile shapes of solar energetic particle events on their magnetic connectivity and heavy ion abundances. The desirability of modelling the particle transport effects in detail and extending the analysis to cover higher energies is indicated.  相似文献   

3.
Coronal mass ejections (CMEs), which are among the most magnificent solar eruptions, are a major driver of space weather and can thus affect diverse human technologies. Different processes have been proposed to explain the initiation and release of CMEs from solar active regions (ARs), without reaching consensus on which is the predominant scenario, and thus rendering impossible to accurately predict when a CME is going to erupt from a given AR. To investigate AR magnetic properties that favor CMEs production, we employ multi-spacecraft data to analyze a long duration AR (NOAA 11089, 11100, 11106, 11112 and 11121) throughout its complete lifetime, spanning five Carrington rotations from July to November 2010. We use data from the Solar Dynamics Observatory to study the evolution of the AR magnetic properties during the five near-side passages, and a proxy to follow the magnetic flux changes when no magnetograms are available, i.e. during far-side transits. The ejectivity is studied by characterizing the angular widths, speeds and masses of 108 CMEs that we associated to the AR, when examining a 124-day period. Such an ejectivity tracking was possible thanks to the multi-viewpoint images provided by the Solar-Terrestrial Relations Observatory and Solar and Heliospheric Observatory in a quasi-quadrature configuration. We also inspected the X-ray flares registered by the GOES satellite and found 162 to be associated to the AR under study. Given the substantial number of ejections studied, we use a statistical approach instead of a single-event analysis. We found three well defined periods of very high CMEs activity and two periods with no mass ejections that are preceded or accompanied by characteristic changes in the AR magnetic flux, free magnetic energy and/or presence of electric currents. Our large sample of CMEs and long term study of a single AR, provide further evidence relating AR magnetic activity to CME and Flare production.  相似文献   

4.
We present the evolution of magnetic field and relationship with the magnetic (current) helicity in solar active regions from a series of photospheric vector magnetograms obtained at Huairou Solar Observing Station near Beijing, and also longitudinal magnetograms by MDI of SOHO, white light and 171 Å images by TRACE and soft X-ray images by Yohkoh.The conclusions in the analysis of the formation process of complex and delta magnetic configuration in some super active regions are the following: (1) The magnetic shear and gradient provide the non-potentiality of the magnetic field of active regions reflecting the existence of electric current. (2) Some of large-scale delta active regions could be due to the emergence of highly sheared non-potential magnetic flux bundles from the subatmosphere with amount of magnetic helicity, in addition to the emergence of twisted magnetic ropes. (3) We also present some results on the study of the magnetic (current) helicity in solar active regions.  相似文献   

5.
Observed galactic cosmic ray intensity can be subjected to a transient decrease. These so-called Forbush decreases are driven by coronal mass ejection induced shockwaves in the heliosphere. By combining in situ measurements by space borne instruments with ground-based cosmic ray observations, we investigate the relationship between solar energetic particle flux, various solar activity indices, and intensity measurements of cosmic rays during such an event. We present cross-correlation study done using proton flux data from the SOHO/ERNE instrument, as well as data collected during some of the strongest Forbush decreases over the last two completed solar cycles by the network of neutron monitor detectors and different solar observatories. We have demonstrated connection between the shape of solar energetic particles fluence spectra and selected coronal mass ejection and Forbush decrease parameters, indicating that power exponents used to model these fluence spectra could be valuable new parameters in similar analysis of mentioned phenomena. They appear to be better predictor variables of Forbush decrease magnitude in interplanetary magnetic field than coronal mass ejection velocities.  相似文献   

6.
In contrast to the situation in a laboratory, the study of the solar atmosphere has to be pursued without direct access to the physical conditions of interest. Information is therefore incomplete and uncertain and inference methods need to be employed to diagnose the physical conditions and processes. One of such methods, solar atmospheric seismology, makes use of observed and theoretically predicted properties of waves to infer plasma and magnetic field properties. A recent development in solar atmospheric seismology consists in the use of inversion and model comparison methods based on Bayesian analysis. In this paper, the philosophy and methodology of Bayesian analysis are first explained. Then, we provide an account of what has been achieved so far from the application of these techniques to solar atmospheric seismology and a prospect of possible future extensions.  相似文献   

7.
The study of the response of the terrestrial environment to the different forms of solar activity is a relevant task. Geomagnetic perturbations arise from the solar wind/magnetospheric coupling and major magnetic storms are caused by intense, long duration Southward interplanetary magnetic fields. This paper addresses reader's attention on possible effects induced by geomagnetic storms on the Earth's ozone layer by reporting a series of experimental results related to the topic. Difficulties connected with a right assessment of such kind of effects are described.  相似文献   

8.
本文比较第17—21太阳周黑子数、地磁A_p指数、各周极大年≥2级耀斑数、磁暴数及第一、二、三大磁暴情况;分析了≥2级耀斑数及磁暴的分布。21周3级耀斑对应磁暴比例低于19、20周,Ⅳ型及米波射电爆发是产生磁暴的重要条件。进一步分析了21周最大磁暴、最大射电爆发引起的磁暴,最严重的电离层短波通讯干扰及有明亮物质抛射的大耀斑、双带大耀斑引起的磁暴等典型例子。最后对SMY期间22个无黑子耀斑作了分析,它们可能引起中小幅度的磁暴。   相似文献   

9.
OH(6-2) rotational temperature trends and solar cycle effects are studied. Observations were carried out at the Maimaga station (63.04°N, 129.51°E) for the period August 1999 to March 2013. Measurements were conducted with an infrared spectrograph. Temperatures were determined from intensity ratios in the P branch of the OH band. The monthly average residuals of temperature after the subtraction of the mean seasonal variation were used for a search for the solar component of temperature response. The dependence of temperatures on solar activity has been investigated using the Ottawa 10.7 cm flux as a proxy. A linear regression fitting on residual temperatures yields a solar cycle coefficient of 4.24 ± 1.39 K/100 solar flux units (SFU). The cross-correlation analyses showed that changes of the residual temperature follow changes of solar activity with a quasi-two year delay (25 months). The temperature response at the delay of 25 months reaches 7 K/100 SFU. The possible reason of the observed delay can be an influence of quasi-biennial oscillations (QBO) of the atmosphere on the relation of temperature and solar activity. The value of the temperature trend after the subtraction of seasonal and solar components is not statistically significant.  相似文献   

10.
All possible changes of the solar activity can be expressed by the coronal index of solar activity that represents the averaged daily power of the green corona emitted from the Sun’s visible hemisphere. The representative character of this index allows us to study long-term, intermediate and short-term variations of the Sun as a star. This index can be expressed well as a function of other solar indices. As green line reflects the distribution of the photospheric magnetic fields in the solar corona, the dependence of this index on the solar magnetic field is confirmed by means of statistical analysis of these two parameters. Daily values of the coronal index, as well as of the magnetic field data obtained from the Wilcox Solar Observatory, has been analysed by Fast Fourier analysis and Wavelet Transform analysis for the time period 1966–1998 covering more than three solar cycles. Periodicities of 11.4, 3.2, 2.3, 1.7, 1, 0.29, 0.07 and 0.04 years have been found in both parameters that means once again that the coronal index is probably related to the underlying photospheric magnetic fields and can be used as a global index of solar activity useful for Space Weather studies.  相似文献   

11.
Almost 10 years of solar submillimeter observations have shown new aspects of solar activity, such as the presence of rapid solar spikes associated with the launch of coronal mass ejections and an increasing submillimeter spectral component in flares. We analyse the singular microwave–submillimeter spectrum of an M class solar flare on 20 December, 2002. Flux density observations measured by Sun patrol telescopes and the Solar Submillimeter Telescope are used to build the radio spectrum, which is fitted using Ramaty’s code. At submillimeter frequencies the spectrum shows a component different from the microwave classical burst. The fitting is achieved proposing two homogeneous sources of emission. This theoretical fitting is in agreement with differential precipitation through a magnetically asymmetric loop or set of loops. From a coronal magnetic field model we infer an asymmetric magnetic structure at the flare location. The model proposed to quantify the differential precipitation rates due to the asymmetry results in a total precipitation ratio Q2/Q1≈104–105, where Q1(Q2) represents the total precipitation in the loop foot with the high (low) magnetic field intensity. This ratio agrees with the electron total number ratio of the two sources proposed to fit the radio spectrum.  相似文献   

12.
A method of prediction of expected part of global climate change caused by cosmic ray (CR) by forecasting of galactic cosmic ray intensity time variation in near future based on solar activity data prediction and determined parameters of convection-diffusion and drift mechanisms is presented. This gave possibility to make prediction of expected part of global climate change, caused by long-term cosmic ray intensity variation. In this paper, we use the model of cosmic ray modulation in the Heliosphere, which considers a relation between long-term cosmic ray variations with parameters of the solar magnetic field. The later now can be predicted with good accuracy. By using this prediction, the expected cosmic ray variations in the near Earth space also can be estimated with a good accuracy. It is shown that there are two possibilities: (1) to predict cosmic ray intensity for 1–6 months by using a delay of long-term cosmic ray variations relatively to effects of the solar activity and (2) to predict cosmic ray intensity for the next solar cycle. For the second case, the prediction of the global solar magnetic field characteristics is crucial. For both cases, reliable long-term cosmic ray and solar activity data as well as solar magnetic field are necessary. For solar magnetic field, we used results of two magnetographs (from Stanford and Kitt Peak Observatories). The obtained forecasting of long-term cosmic ray intensity variation we use for estimation of the part of global climate change caused by cosmic ray intensity changing (influenced on global cloudiness covering).  相似文献   

13.
Measurements of the motion of plasma density inhomogeneities in the inner solar wind are presented. The speeds were estimated using a cross-correlation analysis of radio frequency fluctuations of the Galileo spacecraft measured simultaneously at widely spaced ground stations. The radial projections of the correlation baselines on the pattern plane were of the order of several thousand kilometers. For cross-correlation functions calculated with comparatively short averaging times, we find that a pronounced two-velocity configuration is occasionally observed over the range of heliocentric distances 20 R < R < 40 R. The typical mean speed for such observations is about 300–400 km/s and the difference between the two predominant speeds is about 150–200 km/s. These results may indicate that the density fluctuations are associated with slow magnetosonic waves propagating in opposite directions at the local speed of sound in the reference frame moving with the mean solar wind speed. Quite reasonable estimates of the solar wind speed and speed of sound are obtained from this model. Another possible explanation of the two-velocity structures is that two independent solar wind streams are present simultaneously along different segments of the radio ray path.  相似文献   

14.
In this work we make an analysis of significant periodicities shown by phenomena linked to solar activity such as coronal hole area, radio emission in the 10.7 cm band and sunspots. We use the wavelet method that gives information in the frequency and time domains. Of particular interest are the mid-term periodicities (1–2 yrs). Over the whole period, coronal holes and radio variations show an important annual variation and a quasi-biannual periodicity. The increase in these variations is most important around the years of maximum solar activity. When the time series are separated in low and high frequencies, the latter are modulated by the general solar cycle. Although somewhat shifted in frequency, these periodicities might well correspond with those found in cosmic ray intensity, solar magnetic flux and other terrestrial and interplanetary phenomena as a wavelet coherence analysis of these series with the solar magnetic flux reveals.  相似文献   

15.
Using full-disk observations obtained with the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) spacecraft, we present variations of the solar acoustic mode frequencies caused by the solar activity cycle. High-degree (100 < ? < 900) solar acoustic modes were analyzed using global helioseismology analysis techniques over most of solar cycle 23. We followed the methodology described in details in [Korzennik, S.G., Rabello-Soares, M.C., Schou, J. On the determination of Michelson Doppler Imager high-degree mode frequencies. ApJ 602, 481–515, 2004] to infer unbiased estimates of high-degree mode parameters ([see also Rabello-Soares, M.C., Korzennik, S.G., Schou, J. High-degree mode frequencies: changes with solar cycle. ESA SP-624, 2006]). We have removed most of the known instrumental and observational effects that affect specifically high-degree modes. We show that the high-degree changes are in good agreement with the medium-degree results, except for years when the instrument was highly defocused. We analyzed and discuss the effect of defocusing on high-degree estimation. Our results for high-degree modes confirm that the frequency shift scaled by the relative mode inertia is a function of frequency and it is independent of degree.  相似文献   

16.
Nowadays operational models for solar activity forecasting are still based on the statistical relationship between solar activity and solar magnetic field evolution. In order to set up this relationship, many parameters have been proposed to be the measures. Conventional measures are based on the sunspot group classification which provides limited information from sunspots. For this reason, new measures based on solar magnetic field observations are proposed and a solar flare forecasting model supported with an artificial neural network is introduced. This model is equivalent to a person with a long period of solar flare forecasting experience.  相似文献   

17.
The results of cross-correlation analysis between electrons fluxes (with energies of > 0.6MeV, > 2.0 MeV and > 4.0MeV), geomagnetic indices and solar wind parameters are shown in the paper. It is determined that the electron fluxes are controlled not only by the geomagnetic indices, but also by the solar wind parameters, and the solar wind velocity demonstrates the best relation with the electron fluxes. Numerical value of the relation efficiency of external parameters with the highly energetic electrons fluxes shows a periodicity. It is presented here the preliminary results of daily averaged electrons fluxes forecast for a day ahead on the basis of the model of neuron networks.  相似文献   

18.
利用2003-2016年期间子午工程海南站(19.5°N,109.1°E)数字测高仪观测到的电离层等离子体漂移数据,分析了高低两种太阳活动条件下纬向和垂直向漂移对近磁静、中等磁扰和强磁扰三种地磁活动水平的响应特性.结果表明:日间纬向漂移各季节均以西向为主,随地磁活动无明显变化,白天日出附近和夜间漂移在各季节均以东向为主,随地磁活动增强而减弱,减弱程度在分季最大,在夏季最小;日间垂直漂移在零值附近变化,且不受地磁活动和季节影响,日落附近漂移仅在分季受到地磁活动的抑制,午夜前垂直漂移在分季受到抑制,在冬季因强磁扰而反向,夏季无明显规律,子夜至日出后垂直漂移在各季节随地磁活动增强而减小.与赤道区Jicamarca相比,两地漂移对地磁活动的响应相近,但在幅度和相位上存在差异,这可能是两地区的地理位置、背景电场和风场结构等不同造成的.   相似文献   

19.
The generation of solar non-axisymmetric magnetic fields is studied based on a linear α2–Ω dynamo model in a rotating spherical frame. The model consists of a solar-like differential rotation, a magnetic diffusivity varied with depth, and three types of α-effects with different locations, i.e. the tachocline, the whole convective zone and the sub-surface. Some comparisons of the critical α-values of axisymmetric (m = 0) and longitude-dependent modes (m = 1,2,3) are presented to show the roles of the magnetic diffusivity in the problem of modes selection. With the changing of diffusivity intensity for the given solar differential rotation system, the dominant mode possibly changes likewise and the stronger the diffusivity is, the easier the non-axisymmetric modes are excited. The influence of the diffusivity and differential rotation on the configurations of the dominant modes are also presented.  相似文献   

20.
地磁扰动期间日本Kokubunji站电离层的扰动特征分析   总被引:4,自引:4,他引:0  
利用日本Kokubunji站(139.5°E,35.5°N)1959年1月到2004年12月共46年的F2层临界频率foF2参数,统计分析了Kokubunji站电离层F2层峰值电子浓度NmF2随地磁活动、太阳活动、季节和地方时变化的形态特征.结果表明,总体来看,磁暴期间Kokubunji站电离层响应以正暴为主,其中在太阳高年夏季为负暴,冬季为正暴,春秋季以负暴为主但幅度较小;在太阳低年夏季以正暴为主,冬季为正暴,春秋季以正暴为主.NmF2扰动与ap指数在夏季太阳高年负相关,在冬季无论太阳高年低年均为正相关,春秋季中4月和9月在太阳高年类似夏季,3月和10月在太阳低年类似冬季.电离层最大负相扰动对最大地磁活动的延迟时间约为12~15 h;正相扰动的延迟时间则分别为3 h和10 h.地磁活跃期间地方时黄昏后到午夜前倾向于正相扰动,清晨倾向于负相扰动.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号