首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   564篇
  免费   149篇
  国内免费   77篇
航空   491篇
航天技术   107篇
综合类   83篇
航天   109篇
  2024年   3篇
  2023年   13篇
  2022年   22篇
  2021年   35篇
  2020年   28篇
  2019年   33篇
  2018年   26篇
  2017年   27篇
  2016年   30篇
  2015年   17篇
  2014年   31篇
  2013年   20篇
  2012年   33篇
  2011年   38篇
  2010年   43篇
  2009年   29篇
  2008年   42篇
  2007年   37篇
  2006年   38篇
  2005年   38篇
  2004年   30篇
  2003年   28篇
  2002年   27篇
  2001年   12篇
  2000年   10篇
  1999年   10篇
  1998年   20篇
  1997年   7篇
  1996年   13篇
  1995年   10篇
  1994年   7篇
  1993年   7篇
  1992年   9篇
  1991年   7篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
排序方式: 共有790条查询结果,搜索用时 31 毫秒
1.
偏心撞击对撞击式喷嘴雾化特性的影响   总被引:2,自引:0,他引:2  
为研究偏心撞击对撞击式喷嘴雾化特性的影响,建立了求解自燃推进剂冷态射流撞击雾化过程的数值模拟方案,计算了不同偏心度条件下的射流撞击雾化过程。采用树形自适应加密算法直接求解不可压Navier-Stokes方程组,由分段线性的流体体积(VOF)方法对流体界面进行捕捉。结果表明偏心撞击会导致雾场发生偏转,当无量纲偏心度E为1/8时,雾场偏转角度约为9.2°,应控制加工偏差小于该值。随着偏心度的增大,液膜的偏转角度增大,理论推导得到的液膜偏转角度要小于数值计算得到的液膜偏转角度。正心撞击时燃料与氧化剂流强峰值接近,雾场的流强分布呈单峰分布。当发生偏心撞击时,由于燃料与氧化剂部分射流未参与撞击导致流强峰值出现交错,雾场的流强分布呈双峰分布,混合比的空间分布发生较大改变。正心撞击时撞击点下游液滴的速度分布近似呈轴对称分布,而偏心撞击之后的速度分布则呈中心对称分布。偏心撞击导致的射流动量损失使得雾化性能变差,当无量纲偏心度E为1/8时,一甲基肼(MMH)的Sauter平均直径增大约4.8%,四氧化二氮(NTO)的Sauter平均直径增大约5.8%。   相似文献   
2.
朱昭君  强洪夫 《推进技术》2019,40(4):721-731
固体火箭发动机喉衬用轴编C/C复合材料的工作环境面临高温、高压、高速燃气流和大量凝聚相颗粒的烧蚀和冲刷,对材料的抗烧蚀性能和热结构特性要求十分严格。因此,从烧蚀实验和热结构特性实验研究、热结构特性预测与气体-颗粒两相流数值模拟三个方面,论述了轴编C/C复合材料的烧蚀及热结构特性研究进展。总结讨论了实现真实烧蚀工作环境的模拟和影响烧蚀实验参数的控制是高温烧蚀实验的难点,对于铝颗粒添加下工况的烧蚀实验和在细观尺度下热结构特性参数的测定实验是重点;提出从实验件类型、实验系统设计和对比有无铝颗粒添加下的工况进行烧蚀实验;提出采用一种热稳定性材料取代界面的实验方案进行热结构特性参数的测定实验。在热结构特性研究的细观尺度方面,组分材料之间的界面对热结构特性的影响有待深入研究,提出在代表性体积单元模型的基础上引入温度的周期性边界条件来实现热结构参数的预测。在气粒两相流数值模拟方面,发动机内不同相之间相互耦合作用以及对轴编C/C复合材料的机械侵蚀是数值模拟研究的难点,提出使用SDPH-FVM耦合的方法去解决内流场燃烧流动的问题,进一步可用来揭示内流场燃烧流动机理。  相似文献   
3.
DG/FV混合方法因其具有紧致、易于推广获得高阶格式及相比同阶精度DG方法计算量、存储量小等优点,自提出以来已成功应用于一维、二维标量方程和Euler/N-S方程的求解。综述了DG/FV混合方法的研究进展,重点介绍了DG/FV混合方法的空间重构算法、针对RANS方程的求解方法、隐式时间离散格式、数值色散耗散及稳定性分析、计算量理论分析,并给出了系列粘性流算例的计算结果,包括用于验证混合方法数值精度的库埃特流,以及方腔流、亚声速剪切层、低速平板湍流、NACA0012翼型湍流绕流等。数值计算结果表明DG/FV混合方法达到了设计的精度阶,且相比同阶DG方法计算量减少约40%,而隐式方法能大幅提高定常流的收敛历程,较显式Runge-Kutta的收敛速度提高1~2个量级。  相似文献   
4.
针对传统方法搜寻效率低的问题,采取瞄准搜寻策略,提出一种快速精确地检测和估计多分量线性调频(LFM)信号参数的方法。推导出LFM信号的分数阶长度和旋转角度间的近似关系;利用分数阶幅度随旋转角度变化规律,提出一种高效搜寻最优旋转角度的算法,分析得出该算法的计算量较小,相比于传统算法具有较大优势。在低信噪比情况下,进行两次S-G滤波可显著提高检测概率。仿真结果表明,所提方法在低信噪比和存在分量间信号干扰的情况下,能可靠检测和精确估计多分量LFM信号参数。   相似文献   
5.
为了研究燃油以及入口空气压力对于贫油熄火(LBO)边界的影响大小及规律,采用航空煤油(RP-3)、高沸点费托油(FT)和柴油进行了三种不同燃烧室入口压力工况下的贫油熄火实验并进行规律分析。分析结果表明:入口压力对贫油熄火边界的影响(19.17%)要大于燃油性质造成的影响(6.26%)。导致熄火油气比变化的主要因素包括入口空气压力,火焰体积,燃烧室温度,燃油雾化直径以及燃油的热值和密度,其中火焰体积和燃油雾化直径主要受燃油性质影响,而燃烧室温度则与入口压力有很大关系。入口压力影响的贫油熄火油气比变化会受其影响的火焰体积和燃烧室温度变化而削弱。碳数高支链烷烃含量少的燃油可能会提高火焰体积对熄火油气比的影响,使其在低入口压力下有更好的贫油熄火边界。   相似文献   
6.
梯度与高阶导数重构是影响高阶精度非结构有限体积(Finite?Volume,?FV)格式计算效果的主要过程,其中,不同的模板选择方式发挥了重要作用.传统的模板选择方式往往依赖于固定的网格拓扑关系,无法有效反映流动变化特征,并且随着求解精度的提高,模板单元的数量上升明显,导致找到的模板单元包含过多冗余信息的同时,显著增大计算量,降低求解效率.基于此现状,文章将基于二阶精度FV格式发展的全局方向模板推广至高阶精度FV方法,以充分发挥模板的空间延展性优势,并减少冗余的模板单元数量.此外,文章通过基于制造解的流动与真实超声速涡流两个数值算例,测试了全局方向模板的数值表现.经检验,全局方向模板的使用可有效减少重构过程所需的模板单元数量,并且计算误差相比传统基于网格拓扑的共点、共面模板更低,计算稳定性优于局部方向模板.因此,全局方向模板选择方法在三阶精度非结构有限体积方法中具有较好的数值表现,具备进一步推广与应用的可行性.  相似文献   
7.
8.
针对连续纤维增强复合材料涡轮轴结构失效模式分析问题,基于宏-细观力学跨尺度分析方法,建立细观力学代表性体积元(RVE)模型,通过编程模拟实现模型的周期性边界条件,计算纤维增强复合材料应力响应,将其均值应力转化为真实应力,确定失效包线。建立连续纤维增强轴结构力学模型,计算轴结构在扭转载荷下的应力响应。通过复合材料层合板主偏轴关系应力转化,将危险单元各方向宏观应力响应计算结果转化到细观力学RVE模型上,即为细观力学RVE模型受载情况。结合细观力学失效边界确定复合材料轴结构危险位置失效模式,当扭转载荷达到5 000~5 500 N·m之间,复合材料最外层即层6(+45°)首先达到基体拉伸失效载荷。开展复合材料轴结构失效模式试验,在扭转载荷达到6 000 N·m时,声发射信号相互叠加,大部分均为中频信号,中频信号多为基体、界面开裂信号。与模拟仿真计算结果对比分析,验证连续纤维增强复合材料涡轮轴结构失效模式分析方法的有效性。利用所建立模型预测了某型发动机低压涡轮轴的失效载荷及失效模式。  相似文献   
9.
随着技术的发展及战场环境的日益复杂化,拦截机动目标的需求越来越大。然而传统制导律在拦截机动目标时存在制导精度差、末端过载突变的问题,故提出了一种基于分数阶微积分理论的最优导引律。首先,介绍了分数阶微积分的定义、性质及其数字实现方法;然后,分析了弹目相对运动关系,通过分数阶变阶次建模和最优控制理论推导出了分数阶导引律;最后,仿真结果表明:与传统比例导引法相比,所设计的分数阶最优导引律能够保持比例导引法良好的追踪性能且拦截时间能够缩短2s,末端过载值趋近于0。该方法解决了传统比例导引法在末端由视线角速率发散而导致的末端过载突变问题。  相似文献   
10.
针对S型进气道弯度对其隐身气动特性影响程度的问题,利用CAD软件对进气道进行参数化建模,通过改变进、出口的中心偏移量实现对进气道弯度的改变。采用数值仿真方法分别研究了进气道前向电磁散射特性和进气道流场及气动特性。仿真结果表明,进气道弯度增加对隐身特性和气动特性的影响是完全相反的,并进一步分析出这一现象的产生机理,对进气道的隐身气动一体化设计具有指导性意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号