首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   4篇
航空   4篇
  2022年   1篇
  2019年   3篇
排序方式: 共有4条查询结果,搜索用时 71 毫秒
1
1.
To explore the low-speed characteristics of the Blended-Wing-Body (BWB) configuration for future civil aircraft, a series of unmanned subscale demonstrators have been developed and tested by our research team. During this process, specific safety risks deriving from uncertain design features, system unreliability, and insufficient personnel experience caused continuous flight test mishaps and the risk mechanism was not clear. Local and trial-and-error learning driven safety improvements took few effects on mishap prevention, so our focus was turned to look for systematic safety strategies. This paper establishes a systems theory based hybrid model to integrate the physical system reliability analysis techniques with the system dynamics method for illustrating the multiple risk interactions of the demonstrator flight test involving organizational, human resource and technical system factors. Using the prior BB-5 demonstrator as a case, the hybrid model simulation represents its historical risk evolution process, which verifies the model rationality. Derived risk control strategies reduced the mishap rate of a new demonstrator called BB-6 Sprit. The paper also shows the extended hybrid model can be applied on safety management of unmanned aerial vehicles from the initial period of vehicle development.  相似文献   
2.
Blended-Wing-Body(BWB) configuration, as an innovative transport concept, has become a worldwide research focus in the field of civil transports development. Relative to the conventional Tube-And-Wing(TAW) configuration, the BWB shows integrated benefits and serves as a most promising candidate for future ‘‘green aviation". The objective of the present work is to figure out the effects of the stability margin and Thrust Specific Fuel Consumption(TSFC) on the BWB design in the framework of Multi-Disciplinary Optimization(MDO). A physically-based platform was promoted to study the effect static stability margin and engine technology level. Low-order physically based models are applied to the evaluation of the weight and the aerodynamic performance. The modules and methods are illustrated in detail, and the validation of the methods shows feasibility and confidence for the conceptual design of BWB aircrafts. In order to find out the relation between planform changes and the selection of stability and engine technology level, two sets of optimizations are conducted separately. The study proves that these two factors have dominant effects towards the optimized BWB designs in both aerodynamic shapes, weight distribution, which needs to be considered during the MDO design process. A balance diagram analysis is applied to find out a reasonable static stability margin range. It can be concluded that a recommended stability margin of a practical BWB commercial aircraft can be half of that of a conventional TAW design.  相似文献   
3.
As one of the promising configurations of the next generation of commercial aircraft,research on departure characteristics of the Blended-Wing-Body(BWB) is of great signification to safe flight limits. A three-degree-of-freedom(3-DOF) virtual flight test in a wind tunnel has been implemented for a candidate configuration to predict the departure characteristics. The support mechanism, the test model and the control law of the virtual flight test are introduced. In order to show the relationship ...  相似文献   
4.
Strong shock waves and flow separation often occur during the integration of nacelle and airframe for blended-wing-bodies with podded engines. To address this problem, this paper presents an integration method with numerical simulations. The philosophy of channeling flow and avoiding the throat effect on the nacelle and airframe is established based on the analysis of flow interference in the initial configuration. A parametric integration design method is proposed from twodimensional plane to three-dimensional space with control mechanisms and selection principles of the key parameters determined by their influences. Results show that strong shock waves and flow separation can be successfully eliminated under the influence of both the reshaped channel and decelerated inflow below the nacelle. Supersonic regions around the nacelle are effectively reduced, concentrating mainly on the lip position. Thus, a significant cruise drag reduction(8.7%) is achieved though the pressure drag of the nacelle increases.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号