首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
航天技术   3篇
航天   2篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1991年   1篇
  1982年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Bariteau  M.  Mandeville  J.-C. 《Space Debris》2000,2(2):97-107
When a micro-debris or a micrometeoroid impacts a spacecraft surface, a large number of secondary particles, called ejecta, are produced. These particles can contribute to a modification of the debris environment: either locally by the occurrence of secondary impacts on the components of complex and large space structures, or at great distance by the formation of a population of small orbital debris. This paper describes firstly, the ejecta overall production, and secondly, the lifetime and the orbital evolution of the particles. Finally the repartition of ejecta in LEO is computed. Some results describing the population as a function of size and altitude are presented.  相似文献   
2.
Each time a debris particle or a meteoroid strikes a satellite in orbit, a great amount of secondary particles is ejected in the neighborhood of the impact site. This phenomenon is important in particular for brittle materials, such as those used for solar arrays or thermal control paint. The secondary particles that do not impact other parts of the spacecraft are added to the primary debris population and hence increase the small debris particle flux. We describe an ejecta production model that gives the size and the velocity distribution of ejected particles as a function of primary impact parameters. The model has been used to explain the discrepancy between measurements and modeling of impact crater distribution on the solar arrays of the EuReCa spacecraft.  相似文献   
3.
Upon the last joint Soviet-French mission on the MIR Space Station, on December 1988, an experiment devoted to the collection and detection of cosmic dust and space debris has been deployed in space during 13 months.

A variety of sensors and collecting devices has make possible the study of effects and distribution of cosmic particles after recovery of exposed material. Remnants of particles, suitable for chemical identification are expected to be found within the stacked foil detectors. Discrimination between true cosmic particles and man-made orbital debris is expected.

Some preliminary results are presented here.  相似文献   

4.
Many experiments devoted to the study of interplanetary dust particles have been flown in the past few years in order to improve our knowledge on this peculiar aspect of the space environment. A widely used approach consist merely in the exposure to space, for extended period of time, of selected target plates. After retrieval, the size distribution of the impact craters provides primarly data on the flux of impacting particles. Selection of adequate target materials help to provide additional data as impact velocity and density of particles. However interpretation of impact features requires a careful analysis of hypervelocity impact processes and a comparison with laboratory data is necessary to evaluate the physical and chemical properties of impacting objects. Some current impact detection techniques and associated results are reviewed in this paper.  相似文献   
5.
A low power high reliability impact sensor based on the discharge of a parallel plate capacitor is described. The choice of a surface area of about 1000 cm2 and a penetration thickness of 50 micrometers will provide data on the flux density of cometary dust particles in the 5 micrometers diameter range (10−10g). A high noise immunity promotes excellent reliability under conditions of heavy spacecraft bombardment and high plasma densities in the late stages of the 500 km approach distance. Self-limiting of the event rate compression system also provides flux data at arbitrarily high impact rates. The capacitor sensor will be located on the external face of the outer dust shield of Giotto Spacecraft and it will be a part of the DIDSY experiment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号