首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
航天   1篇
  2001年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
The power plant analyzed in this work consists of a selective solar collector–thermal engine combination. The paper focuses on solar power plant operation under various weather conditions during all seasons on Mars. Meteorological data measured at Viking Landers (VL) sites were used in computations. Two strategies to collect solar radiation were analyzed: a solar horizontal (H) collector and a solar collector whose tilt and orientation are continuously adjusted to keep the receiving surface perpendicular to Sun rays (P). Both a low and a high efficiency thermal engine were considered. All the computations were performed for a selective solar flat-plate collector similar in size to the Mars Pathfinder's Sojourner. Results show that generally the influence of latitude on performance is important. In some situations, the meteorological effects compensate the latitudinal effects and the output power is quite similar at both VL1 and VL2 sites. In case a low-efficiency engine is coupled to a horizontal collector, the solar efficiency does not exceed 0.13 at VL2 site. It is lower during summer and higher during winter dust storms. In case the low-efficiency engine is coupled to a P collector, the solar efficiency increases during summer. The solar efficiency is as high as 0.18 in case of a horizontal collector attached to a high-efficiency engine. If the high-efficiency thermal engine is connected to a P collector the solar efficiency increases significantly during summer and spring but does not exceed 0.18. The power provided by a system consisting of a horizontal collector and a low-efficiency engine does not exceed 7 W. Using a high engine coupled to a horizontal collector leads to a power output up to 13 W during spring, autumn and winter. The P collector is recommended mainly during summer and spring in combination with high-efficiency engines. In this case the solar efficiency could be as high as 25 W. The performance of PV cell power systems and properly designed dynamic solar power plants operating on Mars is comparable.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号