首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
航空   2篇
航天技术   4篇
航天   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有7条查询结果,搜索用时 93 毫秒
1
1.
This study presents several observations of the Cluster spacecraft on September 24, 2003 around 15:10 UT, which show necessary prerequisites and consequences for the formation of the so-called modified-two-stream instability (MTSI). Theoretical studies suggest that the plasma is MTSI unstable if (1) a relative drift of electrons and ions is present, which exceeds the Alfvèn speed, and (2) this relative drift or current is in the cross-field direction. As consequences of the formation of a MTSI one expects to observe (1) a field-aligned electron beam, (2) heating of the plasma, and (3) an enhancement in the B-wave spectrum at frequencies in the range of the lower-hybrid-frequency (LHF). In this study we use prime parameter data of the CIS and PEACE instruments onboard the Cluster spacecraft to verify the drift velocities of ions and electrons, FGM data to calculate the expected LHF and Alfvèn velocity, and the direction of the current. The B-wave spectrum is recorded by the STAFF instrument of Cluster. Finally, a field aligned beam of electrons is observed by 3D measurements of the IES instrument of the RAPID unit. Observations are verified using a theoretical model showing the build-up of a MTSI under the given circumstances.  相似文献   
2.
A linear MHD instability of the electric current sheet, characterized by a small normal magnetic field component, varying along the sheet, is investigated. The tangential magnetic field component is modeled by a hyperbolic function, describing Harris-like variations of the field across the sheet. For this problem, which is formulated in a 3D domain, the conventional compressible ideal MHD equations are applied. By assuming Fourier harmonics along the electric current, the linearized 3D equations are reduced to 2D ones. A finite difference numerical scheme is applied to examine the time evolution of small initial perturbations of the plasma parameters. This work is an extended numerical study of the so called “double gradient instability”, – a possible candidate for the explanation of flapping oscillations in the magnetotail current sheet, which has been analyzed previously in the framework of a simplified analytical approach for an incompressible plasma. The dispersion curve is obtained for the kink-like mode of the instability. It is shown that this curve demonstrates a quantitative agreement with the previous analytical result. The development of the instability is investigated also for various enhanced values of the normal magnetic field component. It is found that the characteristic values of the growth rate of the instability shows a linear dependence on the square root of the parameter, which scales uniformly the normal component of the magnetic field in the current sheet.  相似文献   
3.
Atmospheric erosion of CO2-rich Earth-size exoplanets due to coronal mass ejection (CME)-induced ion pick up within close-in habitable zones of active M-type dwarf stars is investigated. Since M stars are active at the X-ray and extreme ultraviolet radiation (XUV) wave-lengths over long periods of time, we have applied a thermal balance model at various XUV flux input values for simulating the thermospheric heating by photodissociation and ionization processes due to exothermic chemical reactions and cooling by the CO2 infrared radiation in the 15 microm band. Our study shows that intense XUV radiation of active M stars results in atmospheric expansion and extended exospheres. Using thermospheric neutral and ion densities calculated for various XUV fluxes, we applied a numerical test particle model for simulation of atmospheric ion pick up loss from an extended exosphere arising from its interaction with expected minimum and maximum CME plasma flows. Our results indicate that the Earth-like exoplanets that have no, or weak, magnetic moments may lose tens to hundreds of bars of atmospheric pressure, or even their whole atmospheres due to the CME-induced O ion pick up at orbital distances 相似文献   
4.
This article proposes a short review of our present knowledge of solar system magnetospheres, with the purpose of placing the study of Saturn’s magnetosphere in the context of a comparative approach. We describe the diversity of solar system magnetospheres and the underlying causes of this diversity: nature and magnetization state of the planetary obstacle, presence or not of a dense atmosphere, rotation state of the planet, existence of a system of satellites, rings and neutral gas populations in orbit around the planet. We follow the “russian doll” hierarchy of solar system magnetospheres to briefly describe the different objects of this family: the heliosphere, which is the Sun’s magnetosphere; the “elementary” magnetospheres of the inner planets, Earth and Mercury; the “complex” magnetospheres of the giant planets, dominated by planetary rotation and the presence of interacting objects within their magnetospheric cavities, some of which, like Ganymede, Io or Titan, produce small intrinsic or induced magnetospheres inside the large one.We finally describe the main original features of Saturn’s magnetosphere as we see them after the Voyager fly-bys and before the arrival of Cassini at Saturn, and list some of the key questions which Cassini will have to address during its four-year orbital tour.  相似文献   
5.
6.
The main effects caused by the interplanetary magnetic field (IMF) are analyzed in cases of supersonic solar wind flow around magnetized planets (like Earth) and nonmagnetized (like Venus) planets. The IMF has a relatively weak strength in the solar wind but it is enhanced considerably in the so-called plasma depletion layer or magnetic barrier in the vicinity of the streamlined obstacle (magnetopause of a magnetized planet, or ionopause of a nonmagnetized planet). For magnetized planets, the magnetic barrier is a source of free magnetic energy for magnetic reconnection in cases of large magnetic shear at the magnetopause. For nonmagnetized planets, mass loading of the ionospheric particles is very important. The new created ions are accelerated by the electric field related to the IMF, and thus they gain energy from the solar wind plasma. These ions form the boundary layer within the magnetic barrier. This mass loading process affects considerably the profiles of the magnetic field and plasma parameters in the flow region.  相似文献   
7.
The problem of steady-state magnetic reconnection in an infinite current layer in collisionless, incompressible, nonresistive plasma, except of the electron diffusion region, is examined analytically using the electron Hall magnetohydrodynamics approach. It is found that this approach allows reducing the problem to the magnetic field potential finding, while last one has to satisfy the Grad–Shafranov equation. The obtained solution demonstrates all essential Hall reconnection features, namely proton acceleration up to Alfvén velocities, the forming of Hall current systems and the magnetic field structure expected. It turns out that the necessary condition of steady-state reconnection to exist is an electric field potential jump across the electron diffusion region and the separatrices. Besides, the powerful mechanism of electron acceleration in X-line direction is required. It must accelerate electrons up to the electron Alfvén velocity inside the diffusion region and on the separatrixes. This is a necessary condition for steady-state reconnection as well.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号