首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  国内免费   1篇
航空   3篇
综合类   3篇
  2023年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
ZnO作为一种典型的透明导电氧化物(Transparent conductive oxide,TCO)材料,具有同氧化铟锡(Indium tin oxide,ITO)相比拟的光电性能,其原料丰富、绿色环保、易于制备、生成成本低等优点使ZnO成为最有希望替代ITO的材料。本文以玻璃为衬底,利用量子点种子层作为缓冲层,采用传统水热方法制备了低成本ZnO透明导电薄膜,采用特殊的紫外光辐照工艺对薄膜进行后处理,探索薄膜生长参数和紫外光辐照处理工艺对其透光率和导电性的影响。结果表明,紫外辐照处理不影响薄膜的透光性能,而使材料的方块电阻降低3个数量级,数值从没处理时的1.5×105 Ω/□降低到 150 Ω/□,极大地提高了薄膜的电导率,为ZnO薄膜材料电导率的提高提供了一个简单高效的途径。  相似文献   
2.
Ni3Al(Zr)合金在700~1 050°C之间存在低塑性区,无论在空气还是在真空中,都表现出脆性的沿晶断裂,塑性很低.在拉伸过程中形成的致密氧化铝薄膜能够有效地阻止氧向基体中扩散,减少环境脆性,提高合金的高温塑性.活性元素Zr能够与氧原子相互作用,减少裂纹沿晶界扩展,改善合金的高温塑性.  相似文献   
3.
针对国产航空燃油高蒸汽压的特点,提出了 1种带外界补气的燃油箱催化惰化系统。以油箱出口抽吸气体流量为基准,推导了系统各部件进出口各组分气体的流量关系,并基于质量守恒方程及气体平衡溶解关系,建立了油箱气相空间气体体积分数变化的数学模型,推导了临界催化效率,并通过实验对核心的油箱模型进行了正确性验证。以 RP-3燃油为研究对象,引入补气比上下限,分析了催化效率、补气比对催化惰化系统性能的影响。结果显示:催化效率高于临界值时,系统补气可以缩短惰化时间,但同时须增加预热功率以及冷却气体流量;催化效率一定时,补气比存在最优解,且与催化效率正相关,归纳了最优解的经验公式。由于惰化效率更为重要,未来国内在设计催化惰化系统时,可通过增设补气系统来加快惰化速度。  相似文献   
4.
提出了基于内禀模态高频积分能量法的爆震因子计算方法.该方法对电控二冲程煤油发动机缸内燃烧压力信号进行经验模态分解,自适应得到若干内禀模态函数分量与残余函数.对内禀模态函数分量采用快速傅里叶变换得到爆震高频信号分量,选取残余函数峰值对应的曲轴转角为爆震窗口起始曲轴转角,对爆震窗口宽度分析,得到合理爆震窗口宽度持续曲轴转角为30°.利用内禀模态高频积分能量法对无爆震、轻微爆震、中度爆震与强烈爆震工作循环的缸内燃烧压力信号进行爆震因子计算,得到4个工作循环的爆震因子分别为0.6642,1.8191,3.0275,5.3717,可表征爆震的强弱.研究表明基于内禀模态高频积分能量法的爆震因子计算方法简便、快速有效.   相似文献   
5.
激光烧结制备藕状316不锈钢多孔材料的微孔结构特征   总被引:1,自引:0,他引:1  
沈以赴  吴鹏  顾冬冬  李玉芳 《航空学报》2007,28(5):1236-1241
 对含预合金316不锈钢和造孔剂(组分包括硼酸和氟硼酸钾)的混合粉末,进行了激光烧结制备藕状多孔材料的实验研究。利用扫描电镜分析了激光烧结试样的微观孔隙特征,并测定其孔隙率。结果表明,在较低的扫描速率下可获得孔径分布均匀、孔隙贯通性良好的藕状多孔结构;当扫描速率逐步提高时,孔隙生长方向沿扫描方向的倾斜趋势有所增强,而若扫描速率高于0.12 m/s,试样内部藕状多孔结构出现紊乱,有序性降低。随扫描速率逐渐提高,试样孔隙率呈下降趋势。  相似文献   
6.
插电式混合动力汽车(Plug-in hybrid electric vehicles,PHEV)被认为是电动汽车在目前动力电池瓶颈状态下最具发展潜力的混合驱动型式,而成本控制是其发展的关键。以减小PHEV动力系统尺寸、实现有效成本控制为目的,对影响PHEV动力系统配置的关键问题进行了系统分析,提出动力系统有限分级配置方法以及设计目标和边界条件的确定依据;搭建以设计目标和边界条件为输入、以获取满足条件的最小化PHEV动力系统设置为目标的优化选型平台;基于此平台对国内一线城市某PHEV进行动力系统设计和仿真验算,结果验证了系统配置的合理性和优化平台的有效性。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号