首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
航空   1篇
综合类   1篇
  2014年   2篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
设计研制了一种适于机翼分离流动控制的八字形出口合成射流激励器,对其出口射流与主流的相互作用特性进行了研究,粒子图像测速仪(PIV)流场测试和边界层速度型测试结果揭示了其控制机制为促进边界层与主流的诱导掺混,提升边界层底层能量。利用该激励器阵列对NACA633-421三维直机翼模型开展了针对射流能量比Cμ和阵列位置两个参数的分离流控制研究,天平测力及翼型表面测压结果显示该激励器可有效抑制翼面流动分离、推迟失速迎角。在设计范围内,射流能量比Cμ值越大,控制效果越好,当Cμ=0.00168时,机翼最大升力系数提升了5.92%,失速迎角推迟了2.5°(激励器阵列位于0.3c处)。激励器阵列的弦向布置位置是一个重要控制参数,阵列位于0.3c处时最大升力系数提升量大于位于0.55c时。  相似文献   
2.
设计研制了一种适于机翼分离流动控制的八字形出口合成射流激励器,对其出口射流与主流的相互作用特性进行了研究,粒子图像测速仪(PIV)流场测试和边界层速度型测试结果揭示了其控制机制为促进边界层与主流的诱导掺混,提升边界层底层能量。利用该激励器阵列对NACA633-421三维直机翼模型开展了针对射流能量比Cμ和阵列位置两个参数的分离流控制研究,天平测力及翼型表面测压结果显示该激励器可有效抑制翼面流动分离、推迟失速迎角。在设计范围内,射流能量比Cμ值越大,控制效果越好,当Cμ=0.00168时,机翼最大升力系数提升了5.92%,失速迎角推迟了2.5°(激励器阵列位于0.3c处)。激励器阵列的弦向布置位置是一个重要控制参数,阵列位于0.3c处时最大升力系数提升量大于位于0.55c时。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号