首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
航天技术   5篇
  2014年   2篇
  2011年   1篇
  2010年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Unsupervised classification of Synthetic Aperture Radar (SAR) images is the alternative approach when no or minimum apriori information about the image is available. Therefore, an attempt has been made to develop an unsupervised classification scheme for SAR images based on textural information in present paper. For extraction of textural features two properties are used viz. fractal dimension D and Moran’s I. Using these indices an algorithm is proposed for contextual classification of SAR images. The novelty of the algorithm is that it implements the textural information available in SAR image with the help of two texture measures viz. D and I. For estimation of D, the Two Dimensional Variation Method (2DVM) has been revised and implemented whose performance is compared with another method, i.e., Triangular Prism Surface Area Method (TPSAM). It is also necessary to check the classification accuracy for various window sizes and optimize the window size for best classification. This exercise has been carried out to know the effect of window size on classification accuracy. The algorithm is applied on four SAR images of Hardwar region, India and classification accuracy has been computed. A comparison of the proposed algorithm using both fractal dimension estimation methods with the K-Means algorithm is discussed. The maximum overall classification accuracy with K-Means comes to be 53.26% whereas overall classification accuracy with proposed algorithm is 66.16% for TPSAM and 61.26% for 2DVM.  相似文献   
2.
In this paper, through a case study, an attempt has been made to bring out the relationship between post noon E-region electric field and post sunset F-region vertical plasma drift on quiet time Counter Electrojet (CEJ) days. Study carried out using the data from a multi frequency HF Doppler Radar and Digital Ionosonde located over Trivandrum (8.5° N; 77° E; 0.5° N dip lat.) a geomagnetic dip equatorial station in India during quite time CEJ days of the years 2004 and 2006, revealed some interesting aspects of the E region electrodynamics and post sunset F region electrodynamics. It has been observed that, in contrast to the normal electrojet (EEJ) days, the Pre-Reversal Enhancement (PRE) is either weakened or inhibited on CEJ days and the field reversal takes place much earlier than that on a normal day. It is suggested that even after the effects of the field reversal ceases to show up in the ground magnetic data, the reversed field may persist and shows up as a decrease in the PRE experienced by the F-region. In other words, the study indicates that the EEJ associated electrodynamics have a significant role in controlling the PRE.  相似文献   
3.
It is shown in this paper for the first time that the intensity of the daytime thermospheric O(1D) 630.0 nm airglow as measured by the ground-based dayglow photometer over Trivandrum (8.5°N; 77°E; dip lat. 0.5°N), a geomagnetic dip equatorial station, exhibit a direct correlation with the electron density at 180 km. This altitude is about ∼40 km lower than the believed centroid of the O(1D) 630.0 nm dayglow emission i.e. 220 km. This observation is contrary to the understanding of the behavior of O(1D) 630.0 nm dayglow over equatorial/low latitudes. Over these latitudes, the variations of the measured intensity of O(1D) 630.0 nm dayglow are known to be associated with the changes in the electron density at altitudes around 220 km, the centroid of this emission. In this context, the present results indicating the lowering of the peak altitude of O(1D) 630.0 nm emission from ∼220 to ∼180 km over the dip equator is new. Recent results on solar XUV flux indicate that this could be an important parameter that controls the O(1D) 630.0 nm dayglow excitation rates through modulations in the neutral and ionic composition in lower thermosphere-ionosphere region. However, the lowering of the centroid of O(1D) 630.0 nm emission, as shown in this study, has been ascribed primarily to the fountain effect associated with the equatorial ionization anomaly.  相似文献   
4.
The Limb Viewing Hyper Spectral Imager (LiVHySI) is one of the Indian payloads onboard YOUTHSAT (inclination 98.73°, apogee 817 km) launched in April, 2011. The Hyper-spectral imager has been operated in Earth’s limb viewing mode to measure airglow emissions in the spectral range 550–900 nm, from terrestrial upper atmosphere (i.e. 80 km altitude and above) with a line-of-sight range of about 3200 km. The altitude coverage is about 500 km with command selectable lowest altitude. This imaging spectrometer employs a Linearly Variable Filter (LVF) to generate the spectrum and an Active Pixel Sensor (APS) area array of 256 × 512 pixels, placed in close proximity of the LVF as detector. The spectral sampling is done at 1.06 nm interval. The optics used is an eight element f/2 telecentric lens system with 80 mm effective focal length. The detector is aligned with respect to the LVF such that its 512 pixel dimension covers the spectral range. The radiometric sensitivity of the imager is about 20 Rayleigh at noise floor through the signal integration for 10 s at wavelength 630 nm. The imager is being operated during the eclipsed portion of satellite orbits. The integration in the time/spatial domain could be chosen depending upon the season, solar and geomagnetic activity and/or specific target area. This paper primarily aims at describing LiVHySI, its in-orbit operations, quality, potential of the data and its first observations. The images reveal the thermospheric airglow at 630 nm to be the most prominent. These first LiVHySI observations carried out on the night of 21st April, 2011 are presented here, while the variability exhibited by the thermospheric nightglow at O(1D) 630 nm has been described in detail.  相似文献   
5.
Post-sunset and pre-sunrise vertical plasma drifts at the equatorial F-region have been investigated using the HF Doppler radar and ionosonde observations. Observed vertical plasma drift features during the sunrise are found to complement that observed during the evening. The post-sunset vertical plasma drift is characterized by an upward enhancement, a pre-reversal enhancement and a reversal in the drift direction. Similarly, the pre-sunrise plasma drift is characterized by a sudden downward excursion followed by an upward turning. The wavelet analysis of the plasma drift shows the presence of fluctuations in the period range 4–32 min and the short period fluctuations are attributed to the atmospheric gravity waves.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号