首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航空   1篇
航天技术   1篇
航天   1篇
  2011年   1篇
  2002年   1篇
  1989年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Stimulus dependence is a general feature of developing sensory systems. It has been shown earlier that the growth of inner ear heavy stones (otoliths) of late-stage Cichlid fish (Oreochromis mossambicus) and Zebrafish (Danio rerio) is slowed down by hypergravity, whereas microgravity during space flight yields an opposite effect, i.e. larger than 1 g otoliths, in Swordtail (Xiphophorus helleri) and in Cichlid fish late-stage embryos. These and related studies proposed that otolith growth is actively adjusted via a feedback mechanism to produce a test mass of the appropriate physical capacity. Using ground-based techniques to apply simulated weightlessness, long-term clinorotation (CR; exposure on a fast-rotating Clinostat with one axis of rotation) led to larger than 1 g otoliths in late-stage Cichlid fish. Larger than normal otoliths were also found in early-staged Zebrafish embryos after short-term Wall Vessel Rotation (WVR; also regarded as a method to simulate weightlessness). These results are basically in line with the results obtained on Swordtails from space flight.  相似文献   
2.
Kabana  Sonja  Minkowski  Peter 《Space Science Reviews》2002,100(1-4):175-192
The structure of a spherically symmetric stable dark `star' is discussed, at zero temperature, containing 1) a core of quarks in the deconfined phase and antileptons 2) a shell of hadrons in particular n, p, and and leptons or antileptons and 3) a shell of hydrogen in the superfluid phase. If the superfluid hydrogen phase goes over into the electromagnetic plasma phase at densities well below one atom (10 fm)3, as is usually assumed, the hydrogen shell is insignificant for the mass and the radius of the `star'. These quantities are then determined approximatively: mass = 1.8 solar masses, radius = 9.2 km.  相似文献   
3.
The microgravity measurement assembly (MMA) is a precision measurement facility for ground and on-orbit disturbance accelerations on board Spacelab, being currently under development by MBB/ERNO under DFVLR contract. MMA is using a new generation of micromechanical acceleration detectors developed by CSEM under ESTEC contract. Small dimensions of the triaxial sensor packages allow for installation very close to scientific experiments; mass is significantly reduced compared to conventional systems. Six or more of these mini-sensor packages are installed at the most g-sensitive experiments of Spacelab Module Missions. Acceleration and housekeeping data are processed in real time by a dedicated microcomputer and transmitted to the ground. Thus, for the first time, synchronized and comparable precision acceleration data are available in real time on ground for on-line judgement of the microgravity environment desired for experiment success, offering the possibility, for example of experiment repetition in case of excessive g-disturbances. Furthermore, MMA allows for immediate feedback to the crew concerning the microgravity effects of their dynamic behavior, with the aim of crew training towards lower disturbances. An additional mobile sensor package can be installed at vibration sources, e.g. pumps, centrifuges etc. or any arbitrary location inside the Spacelab Module. An impact hammer can be used together with MMA in order to measure in-flight structural transfer functions. The MMA on-board system and ground station and its planned utilization for the German Spacelab Mission D-2 is described.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号