首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航空   1篇
航天技术   1篇
航天   1篇
  2018年   1篇
  2011年   1篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The thrust vector control (TVC) scheme is a powerful method in spacecraft attitude control. Since the control of a small spacecraft is being studied here, a solid rocket motor (SRM) should be used instead of a liquid propellant motor. Among the TVC methods, gimbaled-TVC as an efficient method is employed in this paper. The spacecraft structure is composed of a body and a gimbaled-SRM where common attitude control systems such as reaction control system (RCS) and spin-stabilization are not presented. A nonlinear two-body model is considered for the characterization of the gimbaled-thruster spacecraft where, the only control input is provided by a gimbal actuator. The attitude of the spacecraft is affected by a large exogenous disturbance torque which is generated by a thrust vector misalignment from the center of mass (C.M). A linear control law is designed to stabilize the spacecraft attitude while rejecting the mentioned disturbance torque. A semi-analytical formulation of the region of attraction (RoA) is developed to ensure the local stability and fast convergence of the nonlinear closed-loop system. Simulation results of the 3D maneuvers are included to show the applicability of this method for use in a small spacecraft.  相似文献   
2.
3.
In this paper a heuristic design strategy for stabilizing the satellite attitude has been proposed. It is assumed that the satellite is actuated by a set of mutually perpendicular magnetic coils. Using well-known Lyapunov direct stability method it is shown that the proposed controller causes to a global asymptotic stable system for all near polar orbits. The design procedure is based on analyzing of the conceptual effects of magnetic coils on the satellite attitude motion. Considering these effects lead to some intuitive results which determine the global stabilizing control law. The performance and robustness of the designed controller against actuators saturation and quantization error have been verified using a real-time-hardware–software in-loop (RTHSIL) simulation results. These results show that the global stability can be achieved although some disturbances and restrictions exist. This stabilizing controller can be simply combined with a linear explicit model predictive controller (EMPC) to achieve a full three-axis control law.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号