首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
  国内免费   6篇
航空   1篇
航天技术   1篇
航天   5篇
  2018年   1篇
  2017年   5篇
  2015年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
精密高刚度铰链作为六自由度并联激励平台中的关键组件,其性能高低对激励台的控制精度有直接影响。针对铰链所需满足的高刚度、高基频和无间隙等要求,文章提出了基于虎克铰结构的铰链设计方法。首先根据铰链所处的工况确定选用圆锥滚子轴承作为旋转支撑部件,并通过对轴承的配置和预紧实现无间隙振动运动的要求,从而确定了铰链结构形式。然后,利用有限元法校核了结构的刚度与基频,进而完成铰链结构方案和样机制造,并将样机集成于激励台中。最后,开展了铰链动态特性试验和激励台振动控制试验,分别获取了铰链的基频和激励台控制响应。结果表明,铰链可满足激励台工作频段内的使用要求,铰链设计合理。  相似文献   
2.
针对空间微振动环境模拟的需求,以Stewart平台为对象,研究低频微振动激励控制.传统定增益控制器需要反复调节参数来获取满意的系统输出,同时由于摩擦等因素引起的非线性现象,导致难以在低频段建立精确的系统模型,以上问题均给控制器的设计带来困难.为此,设计一种自适应控制器加传统PID控制器的控制方案,并针对自适应控制器对于非参数不确定性等因素敏感的问题,采用dead-zone技术对自适应律进行修正,以提高控制器的鲁棒性.将此算法应用于Stewart微激励控制系统中,实验结果表明系统平台可以很好的输出单自由度与多自由度低频正弦激励,验证控制器在实际工程中的有效性.  相似文献   
3.
六自由度激励台是多轴同步振动环境模拟的重要地面设备,因其结构复杂且具有多个运动自由度,而难以构建准确的结构动力学模型。文章针对6-PSU构型激励台的结构动力学特性,提出其参数型建模与模型修正方法。首先确定模型修正的对象为含轴承和导轨等接触运动副的铰链与作动部件,提出采用刚度与质量解耦的方法建立其含参等效动力学有限元模型;然后以该等效模型为基础,通过模态参数修正铰链和作动部件等效梁模型参数,再利用频响函数修正模型中轴承和导轨的接触刚度参数,得到了修正后的激励台等效结构动力学模型。修正后的有限元模型计算结果与试验结果吻合较好,验证了建模方法的有效性。  相似文献   
4.
基于准零刚度技术的微重力模拟悬吊装置设计与试验研究   总被引:2,自引:1,他引:2  
微重力地面模拟试验对验证航天器在轨运行的可靠性有重要意义。通常采用低刚度悬吊装置模拟微重力环境,但存在着承载能力低和自振干扰的问题。为解决这些问题,文章提出了一种考虑弹簧自振的准零刚度悬吊装置。首先,通过合理简化推导了承载弹簧在装置中的自振频率计算式,并分析了准零刚度悬吊装置的工作原理,得出设计参数应满足的条件。然后,根据试验承载需求和位移要求提出了参数设计流程,依此流程设计得到了一种可调节平衡位置与几何参数的准零刚度悬吊装置。最后,对装置进行了静力测试与悬吊-隔振试验,结果表明,该装置不仅具有准零刚度特性和较大承载能力,而且解决了自振干扰的问题,能较好地模拟微重力环境。  相似文献   
5.
六自由度振动台台体结构优化设计研究   总被引:4,自引:3,他引:1  
在应用六自由度振动台进行高频振动测试试验时,若台体结构被激发产生共振,则会影响测试结果的准确性。为保证台体的共振频率在工作频带之外,同时使台体重量更轻,文章提出基于二级多点逼近算法的六自由度振动台台体结构优化方法。首先建立台体结构的有限元模型,并根据实际应用工况确定台体连接面法向位移约束的边界条件,以壳、梁单元的截面尺寸和外形半径大小为设计变量,建立以台体结构一阶固有频率和静强度为约束、质量最小为目标的模型。然后,利用二级多点逼近算法对模型进行尺寸优化,并以人机交互的方式实现外形半径的优化,得到满足约束条件的优化解。最后依据优化结果设计与制造出台体结构,并完成台体样机。该台体结构实现了轻量化设计要求并应用于振动试验,验证了该结构优化方法的有效性。  相似文献   
6.
在振动试验台上进行多自由度(MDOF)随机振动激励时,传统的控制方法生成的驱动信号及试验台的响应信号都是高斯信号。但真实的振动干扰信号多是超高斯的;而相比于高斯激励,亚高斯激励可降低驱动信号的最大幅值。为实现多自由度亚高斯和超高斯振动控制,提出一种多自由度非高斯随机振动控制方法,该方法采用系统辨识解决系统耦合问题,而后通过选择特殊的相位生成非高斯伪随机驱动信号,再经过时域随机化得到真随机非高斯驱动信号。基于Hexapod平台的多自由度微振动试验台的亚高斯和超高斯实验表明,在试验台的响应功率谱(PSD)满足工程中常用的±3dB精度的同时,亚高斯驱动信号的最大幅值相比于高斯驱动信号的最大幅值降低了20%以上;超高斯响应信号的峭度与参考峭度的误差在0.2之内。实验结果验证了所提方法的有效性。  相似文献   
7.
Hexapod微激振平台具有负载重量大和振动量级小的特点,为了实现精确卸载、作动器小量级精密控制,研制了基于空气弹簧支撑的Hexapod微激振平台。该平台包括负责工作状态承载的4点梯形分布的空气弹簧柔性支撑和负责非工作状态承载的3点刚性辅助支撑两部分。针对该平台自动调平控制的两大问题:即柔性支撑与刚性支撑之间存在的力耦合以及气路控制中存在的非线性和时延性,提出了连续充气和脉冲充气相结合的开关控制策略。为验证自动调平控制的可行性,在负载重量约为200 kg的Hexapod微激振平台上进行试验,结果表明,平台可在140 s内实现自动调平,且6个作动腿位移误差不超过1 mm。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号