首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
航空   3篇
航天技术   5篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2007年   3篇
  2005年   1篇
  2004年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
六自由度Stewart平台动力学模型的特性分析   总被引:1,自引:0,他引:1  
根据六自由度Stewart平台的动力学模型,利用矩阵分析的方法详细分析和证明了动力学模型的一些物理特性:动力学模型系数矩阵的有界性,矩阵函数的斜对称性以及动力学模型的线性参数化. 这些工作为基于六自由度Stewart平台动力学模型的非线性控制器设计、系统稳定性的证明以及系统物理参数的辨识奠定了理论基础.   相似文献   
2.
根据超磁致伸缩材料的本构方程分析了超磁致伸缩作动器输出位移的组成,以此为根据建立了基于超磁致伸缩作动器的单层单自由度隔振平台数学模型.该模型以平台在激振力作用下产生的振动位移为系统干扰输入;根据此模型分析了基于超磁致伸缩作动器的隔振原理;在频域内推导出了系统隔振能力与激振力频率及作动器最大输出位移之间的数学关系,然后在时域内采用自适应LMS(Least Mean Square)算法在Matalb环境下进行仿真.仿真结果与理论分析均表明,隔振平台的隔振能力与激振力频率的平方以及作动器最大输出位移成正比,从而为合理设计隔振平台用超磁致伸缩作动器提供了理论依据.该模型不仅可用于分析基于磁致伸缩作动器的隔振原理,对其它作动器的隔振原理也适用.   相似文献   
3.
超磁致伸缩作动器(GMA)输入输出之间存在着磁滞非线性关系,当研究其中高频输出特性时,为了降低材料自身迟滞非线性特性的影响,往往选用零点与饱和状态之间线性度较好的不饱和小回线,因此很有必要开展动态不饱和小回线数学模型的研究。首先在综合研究磁致伸缩材料(GMM)和GMA结构动力学特性的基础上结合安培环路定理提出以励磁电流为输入、应变为输出的动态Jiles-Atherton(J-A)模型,然后在引入磁滞回线特性变量的基础上得出J-A模型关键模型参数对其特性的影响规律,根据不饱和小回线仿真与实验波形的偏离特性提出模型参数的修正方法得到不饱和小回线动态J-A模型。最后,在不同频率和不同饱和幅值下通过实验验证该数学模型的正确性。   相似文献   
4.
基于在线频率估计的自适应反馈主动隔振技术   总被引:1,自引:1,他引:0  
针对自适应前馈控制方法的缺点,提出一种周期性振动主动控制的自适应反馈控制方法.利用误差信号恢复振动干扰信号,采用级联陷波器估计信号中周期性分量的频率,并在估计频率处为控制器构造参考信号;控制器的参数则根据Lyapunov稳定性原理进行调整.仿真和主动隔振试验结果表明:频率估计方法在不同信噪比情况下均具有较好的估计精度;主动控制方法在振动频率处的隔振效果明显,隔振量可达16?dB以上,且控制器的参数收敛速度较快.  相似文献   
5.
依据航空噪声的频谱特性,提出将自适应滤波算法与改进的谱减法相级联的方法来增强语音。在强航空噪声背景下,处理后的语音不仅信噪比得到了很大提高,而且在有效抑制背景噪声和音乐噪声的同时,其清晰度和可懂度也得到了很大的改善。  相似文献   
6.
针对箱式动力结构大型化、柔性化的特点,结合有限元法,以二级减速箱为对象研究不同激励条件下齿轮轴-轴承-箱体的振动传递特性.箱体采用Craig-Bampton动力缩减法缩聚到轴承孔中心处作为柔性子结构,啮合传递误差和输入轴扭矩波动分别作为激励源,考虑齿轮的时变啮合刚度、啮合错位、齿侧间隙、轴向重合度等非线性因素,计及轴段、齿轮的重力效应,基于轴段节点的思想分析了箱体缩聚节点处及轴承内圈处的动态加速度响应.最后基于Block Lanzos法提取箱体的固有特征频率.数值分析结果表明,输出轴轴承在动响应传递过程中没有起到衰减作用,应该替换以防影响整个系统的性能;减速箱的箱体设计保守,可以根据箱体缩聚节点处的动态响应为激励条件进行优化.   相似文献   
7.
为了实现激光陀螺实时抖动解调,与陀螺输出信号同步采样抖动反馈信号,并设计算法将两个信号的抖动分量相位和幅度对准,然后执行抖动剥除运算。这种实时解调算法不仅计算量小,而且没有附加相位延迟。  相似文献   
8.
基于磁致伸缩作动器的主动隔振系统分析   总被引:1,自引:0,他引:1  
基于材料的本构方程,建立主动隔振系统的模型,并对其动力学和控制稳定性进行了研究。分析和仿真表明,上层质量对主动控制力的影响较大,采用中间质量的加速度作为反馈量时下层刚度对隔振效果影响明显。在系统的前馈控制形式中,振动频率的变化不会影响系统稳定性,但反馈环节将会降低稳定裕度;在反馈控制形式中,随着振动频率的增大,次通道的延迟作用可能使系统不稳定。   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号