首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
航空   1篇
航天   1篇
  2003年   1篇
  1996年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The Suess-Urey (S-U) mission has been proposed as a NASA Discovery mission to return samples of matter from the Sun to the Earth for isotopic and chemical analyses in terrestrial laboratories to provide a major improvement in our knowledge of the average chemical and isotopic composition of the solar system. The S-U spacecraft and sample return capsule will be placed in a halo orbit around the L1 Sun-Earth libration point for two years to collect solar wind ions which implant into large passive collectors made of ultra-pure materials. Constant Spacecraft-Sun-Earth geometries enable simple spin stabilized attitude control, simple passive thermal control, and a fixed medium gain antenna. Low data requirements and the safety of a Sun-pointed spinner, result in extremely low mission operations costs.  相似文献   
2.
Burnett  D.S.  Barraclough  B.L.  Bennett  R.  Neugebauer  M.  Oldham  L.P.  Sasaki  C.N.  Sevilla  D.  Smith  N.  Stansbery  E.  Sweetnam  D.  Wiens  R.C. 《Space Science Reviews》2003,105(3-4):509-534
The Genesis Discovery mission will return samples of solar matter for analysis of isotopic and elemental compositions in terrestrial laboratories. This is accomplished by exposing ultra-pure materials to the solar wind at the L1 Lagrangian point and returning the materials to Earth. Solar wind collection will continue until April 2004 with Earth return in Sept. 2004. The general science objectives of Genesis are to (1) to obtain solar isotopic abundances to the level of precision required for the interpretation of planetary science data, (2) to significantly improve knowledge of solar elemental abundances, (3) to measure the composition of the different solar wind regimes, and (4) to provide a reservoir of solar matter to serve the needs of planetary science in the 21st century. The Genesis flight system is a sun-pointed spinner, consisting of a spacecraft deck and a sample return capsule (SRC). The SRC houses a canister which contains the collector materials. The lid of the SRC and a cover to the canister were opened to begin solar wind collection on November 30, 2001. To obtain samples of O and N ions of higher fluence relative to background levels in the target materials, an electrostatic mirror (‘concentrator’) is used which focuses the incoming ions over a diameter of about 20 cm onto a 6 cm diameter set of target materials. Solar wind electron and ion monitors (electrostatic analyzers) determine the solar wind regime present at the spacecraft and control the deployment of separate arrays of collector materials to provide the independent regime samples. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号