首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
航空   5篇
航天技术   6篇
航天   1篇
  2009年   1篇
  2008年   2篇
  2003年   1篇
  2002年   1篇
  1994年   1篇
  1985年   3篇
  1976年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有12条查询结果,搜索用时 203 毫秒
1.
The paper is related to specific emissions at frequency <3 MHz observed by the low altitude satellite DEMETER in relation with the thunderstorm activity. At its altitude (~700 km), the phenomena observed on the E-field and B-field spectrograms recorded by the satellite are mainly dominated by whistlers. Particular observations performed by DEMETER are reported. It concerns multiple hop whistlers and interaction between whistlers and lower hybrid noise. Two new phenomena discovered by the satellite are discussed. First, V-shaped emissions up to 20 kHz are observed at mid-latitude during night time. They are centered at the locations of intense thunderstorm activity. By comparison with VLF saucers previously observed by other satellites in the auroral zones it is hypothesized that the source region is located below the satellite and that the triggering mechanism is due to energetic electrons accelerated during sprite events. Second, emissions at frequency ~2 MHz are observed at the time of intense whistlers. These emissions are produced in the lower ionosphere in probable relation with Transient Luminous Events (TLEs).  相似文献   
2.
The performance of the modulation cancellation altimeter is investigated. Several sources of error are considered, specifically: 1) terrain averaging error; 2) output noise fluctuations; 3) errors due to phase shifts; and 4) acquisition ambiguities. The predominant parameters affecting these errors are investigated with a view towards optimizing the performance of the altimeter.  相似文献   
3.
The plasma diagnostic experiments on the AUREOL-3 satellite have revealed flows of low energy 0+ ions deep inside the night plasmasphere during a large substorm. Flux gradients of the 0+ ions were accompanied by enhancements of ELF electric field noise. The appearance of suprathermal ions at L ? 2.5 – 3 is interpreted within the framework of electrostatic ion-cyclotron acceleration of ionospheric ions in the diffuse auroral zone /12/ followed by a radial displacement of these ions inside the plasmasphere driven by azimuthal electric fields during substorm activity. Electrostatic oscillations observed inside the plasmasphere are apparently associated with gradient instability at the sharp boundaries of suprathermal ion flows.  相似文献   
4.
5.
Advances in the theory and technology of artificial neural networks provide the potential for new approaches to the problems of control, identification, and diagnosis for large, complex systems. However, these approaches must be validated for specific applications before they can be exploited effectively. Because of the unique capabilities they offer, neural networks should play an important role in space exploration systems operations. After a brief introduction to neural networks is presented, some applications of neural networks to identification and control of space systems are described and discussed. They span the spectrum of relatively straightforward to rather complex applications. An explanation of how neural networks can be applied to such important tasks as fault diagnosis and accommodation is presented. Neural networks are shown to be part of the hierarchy of intelligent control where a higher order decision element monitors and supervises lower order elements for sensing and actuation.  相似文献   
6.
Intense (n + 1/2) fce emissions are a common phenomenon observed in the terrestrial inner magnetosphere. One of their interests is their possible effect in the pitch angle scattering of plasmasheet keV-electron, leading to diffuse auroras. In this paper, we present CLUSTER’s point of view about this topic, in the equatorial region of the plasmasphere, via a statistical study using 3 years of data. Spectral characteristics of these waves, which represent an important clue concerning their generation mechanism, are obtained using WHISPER data near perigee. Details on the wave spectral signature are shown in an event study, in particular their splitting in fine frequency bands. The orbit configuration of the four spacecraft offers a complete sampling on all MLT sectors. A higher occurrence rate of the emissions in the dawn sector and their confinement to the geomagnetic equator, pointed out in previous studies, are confirmed and described with additional details. The proximity of emission sites, both to the plasmapause layer and to the geomagnetic equator surface, seems to be of great importance in the behaviour of the (n + 1/2) fce wave characteristics. Our study indicates for the first time, that both the intensity of (n + 1/2) fce emissions, and the number of harmonic bands they cover, are increasing as the observation point is located further away outside from the plasmapause layer. Moreover, a study of the wave intensity in the first harmonic band (near 3/2 fce) shows higher amplitude for these emissions than previous published values, these emissions can play a role in the scattering of hot electrons. Finally, geomagnetic activity influence, studied via time series of the Dst index preceding observations, indicates that (n + 1/2) fce emission events are observed at CLUSTER position under moderate geomagnetic activity conditions, no specific Dst time variation being required.  相似文献   
7.
TARANIS “Tool for the Analysis of RAdiations from lightNIngs and Sprites” is a CNES satellite project dedicated to the study of impulsive transfers of energy between the Earth atmosphere and the space environment. Such impulsive transfers of energy, identified by the observation at ground and in space (rocket, balloons, FORMOSAT 2 satellite) of Transient Luminous Events (TLEs) and the detection on satellites (CGRO, RHESSI) of Terrestrial Gamma ray Flashes (TGFs), are likely to occur in other astrophysical environments as well. The TARANIS mission and instrumentation is presented. The way the TARANIS programme (associated ground-based and balloon-based measurements included) may answer questions about the physics of TLEs and TGFs is examined. The questions addressed include: TLEs and TGFs source regions, associated phenomena, transfers of energy between the radiation belts and the atmosphere, TLEs and TGFs generation mechanisms, input parameters to the modelling of the variation of the atmosphere and the electric circuit.  相似文献   
8.
Multi-spacecraft tracing of the high latitude magnetopause (MP) and boundary layers and Interball-1 statistics indicate that:
1. (a) The turbulent boundary layer (TBL) is a persistent feature in the region of the cusp and ‘sash’, a noticeable part of the disturbances weakly depends on the interplanetary magnetic field By component; TBL is a major site for magnetosheath (MSH) plasma penetration inside the magnetosphere through percolation and local reconnection.
2. (b) The TBL disturbances are mainly inherent with the characteristic kinked double-slope spectra and, most probably, 3-wave cascading. The bi-spectral phase coupling indicates self-organization of the TBL as the entire region with features of the non-equilibrium multi-scale and multi-phase system in the near-critical state.
3. (c) We've found the different outer cusp topologies in summer/winter periods: the summer cusp throat is open for the decelerated MSH flows, the winter one is closed by the distant MP with a large-scale (several Re) diamagnetic ‘plasma ball’ inside the MP; the ‘ball’ is filled from MSH through patchy merging rather than large-scale reconnection.
4. (d) A mechanism for the energy release and mass inflow is the local TBL reconnection, which operates at the larger scales for the average anti-parallel fields and at the smaller scales for the nonlinear fluctuating fields; the latter is operative throughout the TBL. The remote from TBL anti-parallel reconnection seems to happen independently.

References

Chen, J., Fritz, T.A., Sheldon, R.B., Spencer, H.E., Spjeldvik, W.N. et al., 1997. Temporary confined population in the polar cap during the August 27, 1996 geomagnetic field distortion period. Geophys. Res. Lett. 24, p. 1447. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (51)
Chen, J. and Fritz, T.A., 1998. Correlation of cusp MeV helium with turbulent ULF power spectra and its implications. Geophys. Res. Lett. 25, p. 4113. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (34)
Consolini, G. and Lui, A.T., 2000. Symmetry breaking and nonlinear wave-wave interaction in current disruption: possible evidence for a phase transition. In: Magnetospheric Current SystemsGeophysical Monograph 118, American Geophysical Union, Washington D.C., pp. 395–401.
Dubinin, E., Skalsky, A., Song, P., Savin, S., Kozyra, J. et al., 2001. Polar-Interball coordinated observations of plasma characteristics in the region of the northern and southern distant cusps. J. Geophys. Res. accepted .
Fedorov, A., Dubinin, E., Song, P., Budnick, E., Larson, P. and Sauvaud, J.A., 2000. Characteristics of the exterior cusp for steady southward IMF: Interball observations. J. Geophys. Res. 105, pp. 15,945–15,957.
Fritz, T.A., Chen, J. and Sheldon, R.B., 2000. The role of the cusp as a source for magnetospheric particles: a new paradigm?. Adv. Space Res. 25, pp. 1445–1457. Article | PDF (871 K) | View Record in Scopus | Cited By in Scopus (18)
Haerendel, G. and Paschmann, G., 1975. Entry of solar wind plasma into the magnetosphere. In: Hultqvist, B. and Stenflo, L., Editors, 1975. Physics of the Hot Plasma in the Magnetosphere, Plenum, NY, p. 23.
Haerendel, G., 1978. Microscopic plasma processes related to reconnection. J. Atmos. Terr. Phys. 40, pp. 343–353. Abstract | PDF (1141 K) | View Record in Scopus | Cited By in Scopus (27)
Klimov, S. et al., 1997. ASPI Experiment: Measurements of Fields and Waves Onboard the INTERBALL-1 Spacecraft. Ann. Geophys. 15, pp. 514–527. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (88)
Kuznetsova, M.M. and Zelenyi, L.M., 1990. The theory of FTE: Stochastic percolation model. In: Russell, C.T., Priest, E.R. and Lee, L.C., Editors, 1990. Physics of Magnetic Flux RopesAmerican Geophysical Union, pp. 473–488.
La Belle-Hamer, A.L., Otto, A. and Lee, L.C., 1995. Magnetic reconnection in the presence of sheared flow and density asymmetry: application to the Earth's magnetopause. J. Geophys. Res. 100, pp. 11,875–11,889.
Lagoutte, D., Lefeuvre, F. and Hanasz, J., 1989. Application of bi-coherence analysis in study of wave interactions in space plasma. J. Geophys. Res. 94, p. 435. Full Text via CrossRef
Maynard, N.C., Savin, S., Erickson, G.A., Kawano, H. et al., 2001. Observations of fluxes of magnetosheath origin by Polar and Interball at high latitudes behind the terminator-relationships to the magnetospheric “sash”. J. Geophys. Res. 104, pp. 6097–6122. Full Text via CrossRef
Merka, J., Safrankova, J., Nemecek, Z., Fedorov, A., Borodkova, N., Savin, S. and Skalsky, A., 2000. High altitude cusp: Interball observations. Adv. Space Res. 25, pp. 1425–1434. Article | PDF (915 K) | View Record in Scopus | Cited By in Scopus (22)
Onsager, T.G., Scudder, J., Lockwood, M. and Russell, C.T., 2001. Reconnection at the high latitude magnetopause during northward IMF conditions. J. Geophys. Res. 106, pp. 25,467–25,488.
Romanov, V., Savin, S., Klimov, S., Romanov, S., Yermolaev, Yu., Blecki, J. and Wronowski, R., 1999. Magnetic turbulence at the magnetopause: plasma penetration. J. Tech. Phys. (Poland) 40 1, pp. 329–332.
Safrankova, J., Nemecek, Z., Prech, L., Sauvaud, J.-A. and Wing, S., 2001. The structure of the magnetopause layers at magnetospheric flanks. In: Proceedings of COSPAR/ESA, Colloquium.
Sagdeev, R.Z. and Galeev, A.A., 1969. Nonlinear plasma theory. In: , Benjamin, White Plains, N.Y., p. 6.
Sandahl, I., Popielavska, B., Budnick, E.Yu., Fedorov, A., Savin, S., Safrankova, J. and Nemecek, Z., 2000. The cusp as seen from Interball. In: Proceedings of Cluster II Workshop. Multiscale/Multipoint Plasma MeasurementsESA/SP-499, Imperial College, London, pp. 39–45.
Savin, S.P., Romanov, S.A., Fedorov, A.O., Zelenyi, L., Klimov, S.I. et al., 1998. The cusp/magnetosheath interface on May 29, 1996: Interball-1 and Polar observations. Geoph. Res. Lett. 25, pp. 2963–2966. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (23)
Savin, S.P., Borodkova, N.L., Budnik, E.Yu., Fedorov, A.O., Klimov, S.I. et al., 1998. Interball tail probe measurements in outer cusp and boundary layers. In: Horwitz, J.L., Gallagher, D.L. and Peterson, W.K., Editors, 1998. Geospace Mass and Energy Flow: Results from the International Solar-Terrestrial Physics ProgramGeophysical Monograph 104, American Geophysical Union, Washington, D.C., pp. 25–44.
Savin, S., Zelenyi, L., Budnik, L., Borodkova, N., Fedorov, A. et al., 1998. Manifestations of Boundary Layer Dynamics in Substrom Activity. Multi Spacecraft Study. In: Kokubun, S. and Kamide, Y., Editors, 1998. SUBSTORM-4, ‘Conf. on Substorms-4’Lake Hamana, Japan: March 9–13, 1998, , Terra Scientific Publ. Co., Tokyo, pp. 125–130.
Savin, S., Budnik, E., Nozdrachev, M., Romanov, V. et al., 1999. On the plasma turbulence and transport at the polar cusp outer border. Chekhoslovak J. Phys. 49 4a, pp. 679–693. View Record in Scopus | Cited By in Scopus (15)
Savin, S., Skalsky, A., Romanov, S., Budnick, E., Borodkova, N., Zelenyi, L. et al., 2000. Outer cusp boundary layer: summer/winter assymetry. In: Proceedings of Symposium ‘From solar corona through interplanetary space into magnetosphere and ionosphere’, Kyiv University, Kyiv, pp. 229–232.
Savin, S., Blecki, J., Pissarenko, N., Lutsenko, V., Kirpichev, I. et al., 2002. Accelerated particles from turbulent boundary layer. In: Proc. of Interball/COSPAR Colloquium ‘Acceleration And Heating In The Magnetosphere’ in press .
Savin, S., Maynard, N., Sandahl, I., Kawano, H., Russell, C.T., Romanov, S., Zelenyi, L. et al., 2002. Magnetosheath/Cusp Interface. Ann. Geophys. submitted .
Siscoe, G.L., Erickson, G.M., Sonnerup, B.U.Ö., Maynard, N.C., Siebert, K.D., Weimer, D.R. and White, W.W., 2001. Magnetospheric sash dependence on IMF direction. Geophys. Res. Lett. in press .
Spreiter, J.R. and Briggs, B.R., 1962. Theoretical determination of the form of the boundary of the solar corpuscular stream produced by interaction with the magnetic dipole field of the Earth. J. Geophys. Res. 67, pp. 37–51. Full Text via CrossRef
Zelenyi, L.M. and Milovanov, A.V., 1998. Multiscale magnetic structure of the distant tail: self-consistent fractal approach. In: New Perspectives on the Earth MagnetotailGeophys. Monograph 105, AGU, Washington DC, pp. 321–338.
  相似文献   
9.
10.
The first-order probability density at the output of the correlation network of the delay-lock discriminator is determined using the methods developed by Arthur, Kac, and Siegert. The analysis assumes that the input signal is stationary and Gaussian and that the discriminator is locked on. No restrictions are made on the bandpass filter characteristics in the channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号