首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359篇
  免费   2篇
  国内免费   3篇
航空   163篇
航天技术   76篇
综合类   1篇
航天   124篇
  2021年   6篇
  2020年   2篇
  2019年   2篇
  2018年   12篇
  2017年   5篇
  2015年   7篇
  2014年   12篇
  2013年   19篇
  2012年   14篇
  2011年   35篇
  2010年   20篇
  2009年   22篇
  2008年   25篇
  2007年   14篇
  2006年   13篇
  2005年   19篇
  2004年   9篇
  2003年   17篇
  2002年   8篇
  2001年   9篇
  2000年   7篇
  1999年   7篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1992年   6篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1987年   5篇
  1986年   6篇
  1985年   7篇
  1983年   4篇
  1982年   3篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有364条查询结果,搜索用时 31 毫秒
1.
For the first time, the spin axis orientation of an inactive box-wing geosynchronous satellite has been estimated from ground-based optical photometric observations of Echostar-2’s specular reflections. Recent photometric light curves obtained of Echostar-2 over four years suggest that unusually bright and brief specular reflections were occurring twice within an observed spin period. These bright and brief specular reflections suggested two satellite surfaces with surface normals separated by approximately 180°. The geometry between the satellite, the Sun, and the observing location at the time of each of the brightest observed reflections, was used to estimate Echostar-2’s equatorial spin axis orientation coordinates. When considering prograde and retrograde rotation, Echostar-2’s spin axis orientation was estimated to have been located within 30° of either equatorial coordinate pole. Echostar-2’s spin axis was observed to have moved approximately 180° in right ascension, within a time span of six months, suggesting a roughly one year spin axis precession period about the satellite’s angular momentum vector.  相似文献   
2.
A large fraction of ISO observing time was used to study the late stages of stellar evolution. Many molecular and solid state features, including crystalline silicates and the rotational lines of water vapour, were detected for the first time in the spectra of (post-)Asymptotic Giant Branch (AGB) stars. Their analysis has greatly improved our knowledge of stellar atmospheres and circumstellar environments. A surprising number of objects, particularly young planetary nebulae with Wolf-Rayet (WR) central stars, were found to exhibit emission features in their ISO spectra that are characteristic of both oxygen-rich and carbon-rich dust species, while far-IR observations of the PDR around NGC 7027 led to the first detections of the rotational line spectra of CH and CH+. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands, and the United Kingdom), and with the participation of ISAS and NASA.  相似文献   
3.
The Electron Radiation Belt   总被引:4,自引:0,他引:4  
Electron radiation belts can change dramatically in a few seconds or slowly over years. Important issues in understanding such changes are: (1) What is the source of electrons in the radiation belts? (2) How important is radial diffusion compared to other radial transport mechanisms? (3) What are the detailed changes in the magnetosphere that produce radial diffusion? (4) Why is the response of the electron radiation belt to changes in the solar wind different from that of substorms and of the ring current? (5) Are processes other than radial transport, such as wave-particle interactions, important in energizing electrons in the radiation belts?  相似文献   
4.
虽然透博梅卡公司现在每年销售发动机超过650台,但它们却认为已经到了研制替换轴功率为450~670千瓦级发动机的时候了.  相似文献   
5.
6.
Using the example of the USA, this article examines the economics of foreign participation in applied R&D space projects, with an emphasis on those with the goal of commercializing technology. Following an overview of the arguments within applied high-tech research in general — fear of subsidizing other countries economies and jeopardizing national prestige; benefits from nationally unavailable skills, reducing government costs and increasing domestic incentives for innovation — the authors consider specific characteristics of markets for space technology in the light of these arguments. They conclude with a discussion of policy options, such as the use of licenses or levy of royalties, to preserve the virtues of foreign competition while addressing concerns about ‘underwriting’ foreign competitors.  相似文献   
7.
The plasma instrumentation (PLS) for the Galileo Mission comprises a nested set of four spherical-plate electrostatic analyzers and three miniature, magnetic mass spectrometers. The three-dimensional velocity distributions of positive ions and electrons, separately, are determined for the energy-per-unit charge (E/Q) range of 0.9 V to 52 kV. A large fraction of the 4-steradian solid angle for charged particle velocity vectors is sampled by means of the fan-shaped field-of-view of 160°, multiple sensors, and the rotation of the spacecraft spinning section. The fields-of-view of the three mass spectrometers are respectively directed perpendicular and nearly parallel and anti-parallel to the spin axis of the spacecraft. These mass spectrometers are used to identify the composition of the positive ion plasmas, e.g., H+, O+, Na+, and S+, in the Jovian magnetosphere. The energy range of these three mass spectrometers is dependent upon the species. The maximum temporal resolutions of the instrument for determining the energy (E/Q) spectra of charged particles and mass (M/Q) composition of positive ion plasmas are 0.5 s. Three-dimensional velocity distributions of electrons and positive ions require a minimum sampling time of 20 s, which is slightly longer than the spacecraft rotation period. The two instrument microprocessors provide the capability of inflight implementation of operational modes by ground-command that are tailored for specific plasma regimes, e.g., magnetosheath, plasma sheet, cold and hot tori, and satellite wakes, and that can be improved upon as acquired knowledge increases during the tour of the Jovian magnetosphere. Because the instrument is specifically designed for measurements in the environs of Jupiter with the advantages of previous surveys with the Voyager spacecraft, first determinations of many plasma phenomena can be expected. These observational objectives include field-aligned currents, three-dimensional ion bulk flows, pickup ions from the Galilean satellites, the spatial distribution of plasmas throughout most of the magnetosphere and including the magnetotail, and ion and electron flows to and from the Jovian ionosphere.  相似文献   
8.
月球勘测者"月球勘测轨道器"   总被引:1,自引:0,他引:1  
美国计划在未来十年内重返月球,向月球发射机器人月球登陆器,并再次实现载人登月.为了给这一宏伟计划做准备,NASA将在2008年十月发射"月球勘测轨道器"(LRO).  相似文献   
9.
The science payload on the Deep Impact mission includes a 1.05–4.8 μm infrared spectrometer with a spectral resolution ranging from R∼200–900. The Deep Impact IR spectrometer was designed to optimize, within engineering and cost constraints, observations of the dust, gas, and nucleus of 9P/Tempel 1. The wavelength range includes absorption and emission features from ices, silicates, organics, and many gases that are known to be, or anticipated to be, present on comets. The expected data will provide measurements at previously unseen spatial resolution before, during, and after our cratering experiment at the comet 9P/Tempel 1. This article explores the unique aspects of the Deep Impact IR spectrometer experiment, presents a range of expectations for spectral data of 9P/Tempel 1, and summarizes the specific science objectives at each phase of the mission.  相似文献   
10.
In 1998, Comet 9P/Tempel 1 was chosen as the target of the Deep Impact mission (A’Hearn, M. F., Belton, M. J. S., and Delamere, A., Space Sci. Rev., 2005) even though very little was known about its physical properties. Efforts were immediately begun to improve this situation by the Deep Impact Science Team leading to the founding of a worldwide observing campaign (Meech et al., Space Sci. Rev., 2005a). This campaign has already produced a great deal of information on the global properties of the comet’s nucleus (summarized in Table I) that is vital to the planning and the assessment of the chances of success at the impact and encounter. Since the mission was begun the successful encounters of the Deep Space 1 spacecraft at Comet 19P/Borrelly and the Stardust spacecraft at Comet 81P/Wild 2 have occurred yielding new information on the state of the nuclei of these two comets. This information, together with earlier results on the nucleus of comet 1P/Halley from the European Space Agency’s Giotto, the Soviet Vega mission, and various ground-based observational and theoretical studies, is used as a basis for conjectures on the morphological, geological, mechanical, and compositional properties of the surface and subsurface that Deep Impact may find at 9P/Tempel 1. We adopt the following working values (circa December 2004) for the nucleus parameters of prime importance to Deep Impact as follows: mean effective radius = 3.25± 0.2 km, shape – irregular triaxial ellipsoid with a/b = 3.2± 0.4 and overall dimensions of ∼14.4 × 4.4 × 4.4 km, principal axis rotation with period = 41.85± 0.1 hr, pole directions (RA, Dec, J2000) = 46± 10, 73± 10 deg (Pole 1) or 287± 14, 16.5± 10 deg (Pole 2) (the two poles are photometrically, but not geometrically, equivalent), Kron-Cousins (V-R) color = 0.56± 0.02, V-band geometric albedo = 0.04± 0.01, R-band geometric albedo = 0.05± 0.01, R-band H(1,1,0) = 14.441± 0.067, and mass ∼7×1013 kg assuming a bulk density of 500 kg m−3. As these are working values, {i.e.}, based on preliminary analyses, it is expected that adjustments to their values may be made before encounter as improved estimates become available through further analysis of the large database being made available by the Deep Impact observing campaign. Given the parameters listed above the impact will occur in an environment where the local gravity is estimated at 0.027–0.04 cm s−2 and the escape velocity between 1.4 and 2 m s−1. For both of the rotation poles found here, the Deep Impact spacecraft on approach to encounter will find the rotation axis close to the plane of the sky (aspect angles 82.2 and 69.7 deg. for pole 1 and 2, respectively). However, until the rotation period estimate is substantially improved, it will remain uncertain whether the impactor will collide with the broadside or the ends of the nucleus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号