首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
航空   13篇
  1994年   1篇
  1990年   1篇
  1981年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
  1972年   3篇
  1967年   1篇
  1966年   1篇
排序方式: 共有13条查询结果,搜索用时 281 毫秒
1.
Global positioning by means of satellites requires simultaneous observation by at least four satellites. The problem is to determine the minimum number of satellites and the corresponding orbital geometry necessary to satisfy this requirement on a continuous basis. To model the problem, a fixed number of users are assumed uniformly distributed in a known manner over the surface of the earth, and the satellites are restricted to exist in either three or four orbital planes. However, the orbit radius and inclination angle are left as variables. Under these assumptions, and starting with a small number of satellites which will be increased afterwards, an algorithm is developed to determine the visibility of satellites at each surface location. In this way it is possible to specify the minimum number of satellites needed by any desired orbital geometry. It is found that the number of satellites required for three-dimensional continuous worldwide coverage decreases as the orbit radius is increased. There appears to be no general trend regarding the effect of the inclination angle on the minimum number of satellites.  相似文献   
2.
A formula is derived for interpolation between output samples of a fast Fourier transform (FFT), i.e., in the frequency domain. Such a formula is useful for obtaining greater frequency resolution when two coarse FFT outputs are available. Consideration is also given to the effect of such interpolation on a weighted FFT.  相似文献   
3.
The detection search problem, one of distributing limited resources so as to maximize the detection probability in the single-try search for a concealed target with known probability density, is analyzed. Under fairly general assumptions, the optimal search density uniquely exists when the detection index is governed by the law of diminishing returns and another simple regularity condition. Numerical procedure based on the bisection method, which is guaranteed to converge if the solution uniquely exists, may be used to solve for the optimal search density and the associated Lagrange multiplier. When it is not possible to confidently estimate the target a priori probability density, the minimax solution guarantees a positive detection probability at the expense of degradation in performance  相似文献   
4.
A typical function of an angle tracking loop is to keep a radar antenna pointed at a target. The error in pointing is directly related to successful operation of the tracking device; therefore, its behavior is of interest. For a tracker with a general polynomial nonlinearity, an arbitrary initial pointing error, and a bounded deterministic input, a method is developed for finding upper bounds on the magnitude of the tracking error using Volterra series techniques. Convergence regions of the Volterra series are also obtained. Applications of these results are made to a second-order tracking device.  相似文献   
5.
This is the second part of a two-part paper which summarizes work pursued by the author in 1967 [2]. The paper describes the application of minimum-variance estimation techniques for in-flight alignment and calibration of an inertial measurement unit (IMU) relative to another IMU and/or some other reference. The first paper [1] formulates the problem, and this paper reports numerical results and analyses. The approach taken is to cast the problem into the framework of Kalman-Bucy estimation theory, where velocity and position differences between the two IMU's are used as observations and the IMU parameters of interest become part of the state vector. Instrument quantization and computer roundoff errors are considered as measurement noise, and environmental induced random accelerations are considered as state noise. In this paper, numerical results for three important IMU error parameter configurations are presented and discussed. The main results of the paper determine the effects of state and observation noise levels and the nominal trajectory on the identifications of the errors for these configurations. A discussion of the minimum number of trajectory maneuvers and of the optimal trajectory maneuvering is given.  相似文献   
6.
The global positioning system (GPS) is a satellite-based radio navigation system to provide extremely accurate three-dimensional position fixes and system time to users anywhere on the Earth at any time regardless of weather conditions. The most significant performance parameter of the GPS is the degree of navigation accuracy which is strongly coupled to the choice of orbit configuration. The 3 X 8 orbit configuration has been considered as an operational GPS which consists of 24 satellites deployed in circular 63° inclined, subsynchronous 12-h orbits. In this paper, the geometric performance of several orbit configuration, including a 3 X 8 orbit configuration, is analyzed numerically by altering orbit period and elevation mask, respectively. It will be shown that 1) there are a few orbit configurations which are comparable to or better than the baseline 3 X 8 orbit configuration, and 2) for higher elevation mask, the geometric performance can be improved effectively by increasing orbit period to some extent.  相似文献   
7.
This paper investigates the stability analysis of nonlinear inertial guidance platform control systems. The principle technique used for this investigation is the direct method of Lyapunov. First, stability criteria are derived for third- and fourth-order systems with saturation type nonlinearity by using the technique developed by R. E. Kalman and Z. V. Rekasius. A method of finding the maximum loop gain g/h is then shown, and the results are compared with those obtained by linear analyses. Finally, the stability criteria are extended to the cases when a coulomb friction type nonlinearity is included.  相似文献   
8.
One of the most important objectives of a radar angle-tracking loop is to keep the target within the beamwidth of the radar antenna. Thus, the behavior of the antenna pointing error is of vital interest in determination of tracking performance. For a tracker with a general polynomial linearity (representing nonlinear receiver characteristics), subjected to constant line-of-sight rate inputs, random initial antenna pointing errors, and white Gaussian receiver noise, a method to obtain approximations to the transient mean and variance of the antenna pointing error as explicit functions of time is presented.  相似文献   
9.
Several filters are applied to the problem of state estimation from inertial measurements of reentry drag. This is a highly nonlinear problem of practical significance. It is found that a filter based on the technique of statistical linearization performs better than the extended Kalman in this application. This is believed to be the first application of the statistically linearized filter to a practical dynamics problem. A sensitivity analysis is performed to demonstrate the relative insensitivity of this filter to modeling errors and approximations.  相似文献   
10.
This is the first part of a two-part paper which summarizes work pursued by the author in 1966 [1]. The paper describes the application of minimum-variance estimation techniques for in-flight alignment and calibration of an inertial measurement unit (IMU) relative to another IMU and/or some other reference. The first part formulates the problem, and the second part [2] reports numerical results and analyses. The approach taken is to cast the problem into the framework of Kalman-Bucy estimation theory, where velocity and position differences between the two IMU's are used as observations and the IMU parameters of interest become part of the state vector. Instrument quantization and computer roundoff errors are considered as measurement noise, and environmental induced random accelerations are considered as state noise. Typical applications of the technique presented might include the alignment and calibration of IMU's on aircraft carriers, the initialization of rockets or rocket airplanes which are launched from the wing of a mother ship, the alignment and calibration of IMU's which are only used in the latter phases of rocket flight, and for the initialization/updating of SST guidance systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号