首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
航空   13篇
  2022年   2篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  1999年   1篇
  1996年   5篇
  1995年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
We show, using the HST — GHRS data on velocity and temperature in the nearby interstellar medium, that the observed 3 – 4 km s–1 relative velocity between the Local Interstellar Cloud (LIC) and the so-called G-cloud located in the Galactic Center hemisphere can be quite naturally explained assuming that the two clouds do interact with each other. In the proposed interpretation the two media are separated by a (quasiperpendicular) MHD shock front propagating from the LIC into the G-cloud. The LIC plasma is then nothing else but the shocked (compression 1.3 – 1.4) gas of the G-cloud. A 1-D single-fluid solution of the Rankine — Hugoniot equations can fit the most probable observed values of the relative velocity (3.75 km/s), LIC (6700 K) and G-cloud (5400 K) kinetic temperatures, if the plasma-beta of the LIC plasma is in the range 1.3 – 1.5 (Table 1). This corresponds to a super — fast magnetosonic motion of the heliosphere through the LIC, independently of LIC density. The LIC magnetic field strength is 1.9 (3.1) G for the LIC electron density ne = 0.04 (0.10) cm–3. In this case the shock is less than 30 000 AU away and moves at about 10 km s–1 relative to the LIC plasma. The Sun is chasing the shock and should catch up with it in about 104 years. If the heliospheric VLP emissions cutoff at 1.8 kHz is indicative of ne (LIC) = 0.04 cm–3 (Gurnett et al., 1993), the (pure plasma) bowshock ahead of the heliopause could be the source of quasi-continuous heliospheric 2-kHz emission band. We believe that with the expected increase in the performance of modern spectroscopic instrumentation the proposed method of magnetic field evaluation may in the future find wider application in the studies of the interstellar medium.  相似文献   
2.
Space Science Reviews - The ESA Swarm mission, launched on 22 November 2013, consists of three spacecraft each equipped with a Micro Advanced Stellar Compass ( $\mu $ ASC) from the Technical...  相似文献   
3.
The major sources of the Soft X-ray Background (SXRB), besides distinct structures as supernovae and superbubbles (e.g. Loop I), are: (i) an absorbed extragalactic emission following a power law, (ii) an absorbed thermal component (~2×106 K) from the galactic disk and halo, (iii) an unabsorbed thermal component, supposedly at 106 K, attributed to the Local Bubble and (iv) the very recently identified unabsorbed Solar Wind Charge-eXchange (SWCX) emission from the heliosphere and the geocorona. We study the SWCX heliospheric component and its contribution to observed data. In a first part, we apply a SWCX heliospheric simulation to model the oxygen lines (3/4 keV) local intensities during shadowing observations of the MBM 12 molecular cloud and a dense filament in the south galactic hemisphere with Chandra, XMM-Newton, and Suzaku telescopes. In a second part, we present a preliminary comparison of SWCX model results with ROSAT and Wisconsin surveys data in the 1/4 keV band. We conclude that, in the 3/4 keV band, the total local intensity is entirely heliospheric, while in the 1/4 keV band, the heliospheric component seems to contribute significantly to the local SXRB intensity and has potentially a strong influence on the interpretation of the ROSAT and Wisconsin surveys data in terms of Local Bubble hot gas temperature.  相似文献   
4.
Energetic proton precipitation occurring during solar events can increase the production of odd nitrogen in the upper stratosphere and mesosphere. A very intense solar proton event (SPE) occurred on 28 October 2003. Its impact on the composition of the middle atmosphere was observed in details due to the availability of several space instruments. Here we present GOMOS observations of a strong NO2increase and a related ozone decrease in the upper stratosphere at north polar latitude. The perturbation of the chemical composition of the stratosphere was observed until the middle of December 2003. A strong NO2 increase was also observed in the south polar vortex in June-July 2003. It is tentatively attributed to the effect of an SPE with protons of moderate energy occurring on 29 May 2003. If this hypothesis is confirmed, it will imply that the global effect of SPEs on the composition of the stratosphere is underestimated when only strong energy SPEs are considered.  相似文献   
5.
Thanks to remarkable new tools, such as the Goddard High Resolution Spectrograph (GHRS) on board the HST and the EUVE spectrometer on the interstellar side, and Ulysses particle detectors on the heliospheric side, it is possible now to begin to compare abundances and physical properties of the interstellar matter outside the heliosphere (from absorption features in the stellar spectra), and inside the heliosphere (from in situ or remote detection of the interstellar neutrals or their derivatives, the pick-up ions or the Anomalous Cosmic Rays detected by the two Voyager spacecraft).Ground-based and UV spectra of nearby stars show that the Sun is located between two volumes of gas of different heliocentric velocities V and temperatures T (see also Linsky et al, this issue). One of these clouds has the same velocity (V= 25.6 km s–1 from = 255 and =8) and temperature (6700 K) as the heliospheric helium of interstellar origin probed by Ulysses, and is certainly surrounding our star (and then the Local Interstellar Cloud or LIC). This Identification allows comparisons between interstellar constituents on both sides of the heliospheric interface.Ly-alpha background data (absorption cell and recent HST-GHRS spectra) suggest that the heliospheric neutral H velocity is smaller by 5–6 km s–1 than the local cloud velocity, and therefore that H is decelerated at its entrance into the heliosphere, in agreement with interaction models between the heliosphere and the ISM which include the coupling with the plasma. This is in favor of a non negligible electron density (at least 0.05 cm3). There are other indications of a rather large ionization of the ambient ISM, such as the ionization equilibrium of interstellar magnesium and of sodium. However the resulting range for the plasma density is still broad.The heliospheric neutral hydrogen number density (0.08–0.16 cm–3) is now less precisely determined than the helium density (0.013–0.017 cm–3, see Gloeckler, Witte et al, Mobius, this issue). The comparison between the neutral hydrogen to neutral helium ratios in the ISM (recent EUVE findings) and in the heliosphere, suggests that 15 to 70% of H does not enter the heliosphere. The comparison between the interstellar oxygen relative abundance (with respect to H and He) in the ISM and the heliospheric abundance deduced from pick-up ions is also in favor of some filtration, and thus of a non-negligible ionization.For a significant ISM plasma density, one expects a Hydrogen wall to be present as an intermediate state of the interstellar H around the interface between inside and outside. Since 1993, the two UVS instruments on board Voyager 1 and 2 indeed reveal clearly the existence of an additional Ly-alpha emission, probably due to a combination of light from the compressed H wall, and from a galactic source. On the other hand, the decelerated and heated neutral hydrogen of this H wall has recently been detected in absorption in the spectra of nearby stars (see Linsky, this issue).  相似文献   
6.
The solar wind carves a cavity in the flow of interstellar H atoms through the solar system by charge-exchange ionization. The resulting Ly- sky pattern depends on the latitude distribution of the solar wind flux and velocity. We review how the solar wind characteristics (mass flux latitude distribution) can be retrieved from Ly- observations, yielding a new remote sensing method of solar wind studies, through UV optical measurements.  相似文献   
7.
This paper summarizes some of the discussions of working group 8–9 during the ISSI Conference on The Heliosphere in the Local Interstellar Medium. Because the subject of these working groups has become significantly broader during the last ten years, we have selected three topics for which recent observations have modified and improved our knowledge of the heliosphere and the surrounding interstellar medium. These topics are the number densities and ISM ionization states of hydrogen and helium, the newly discovered hot gas from the H wall seen in absorption, and the comparison between ISM and heliospheric minor element abundances. Papers from this volume in which more details on these topics can be found are quoted throughout the report.  相似文献   
8.
Space Science Reviews - The Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) is a robotic arm-mounted instrument onboard NASA’s Perseverance...  相似文献   
9.
We present an analysis of Voyager UVS data obtained between 1993 and mid-2007. These data are used to study the interplanetary background and the hydrogen number density in the outer heliosphere. Two types of observations are studied, first the heliospheric scans performed until 2003 and then the fixed line of sight observations, close to the upwind direction, which are still performed at the end of 2007. We make comparisons with models including multiple scattering and hydrogen distributions derived from self-consistent modeling of the interface region. It is found that there is a remaining discrepancy between models and data. The origin of this difference is unknown but it may be linked to a possible tilting of the heliospheric interface due to the presence of an interstellar magnetic field. We should also estimate alternate sources of emission which are not backscattering of solar photons like collisional excitation of hydrogen in the heliosheath and emission after charge transfer or recombination of proton and electron in HII regions. Line profiles from HST/STIS are also presented.  相似文献   
10.
The local Interstellar Medium (ISM) at the 500 pc scale is by many respects a typical place in our Galaxy made of hot and tenuous gas cavities blown by stellar winds and supernovae, that includes the 100 pc wide “Local Hot Bubble (LHB)”, dense and cold clouds forming the cavity “walls”, and finally diffuse and warm clouds embedded within the hot gas, such as the Local Interstellar Cloud (LIC) presently surrounding the Sun. A number of measurements however, including abundance data, have contradicted this “normality” of our interstellar environment. Some contradictions have been explained, some not. I review recent observations at different spatial scales and discuss those peculiarities. At all scales Johannes Geiss has played a major role. At the scale of the first hundred parsecs, there are at least three “anomalies”: (i) the peculiar Gould Belt (GB), (ii) the recently measured peculiar Deuterium abundance pattern, (iii) the low value of the local O, N and 3He gas phase abundances. I discuss here the possibility of a historical link between these three observations: the large scale phenomenon which has generated the Belt, a giant cloud impact or an explosive event could be the common origin. At the 50–100 parsec scale, some of the unexplained or contradictory measurements of the Local Bubble hot gas, including its EUV/soft X ray emissions, ion column-densities and gas pressure may at least partially be elucidated in the light of the newly discovered X-ray emission mechanism following charge transfer between solar wind high ions and solar system neutrals. The Local Bubble hot gas pressure and temperature may be lower than previously inferred. Finally, at the smaller scale of the local diffuse cloudlets (a few parsecs), the knowledge of their structures and physical states has constantly progressed by means of nearby star absorption spectroscopy. On the other hand, thanks to anomalous cosmic rays and pickup ions measurements, local abundances of ISM neutral species are now precisely derived and may be compared with the absorption data. Interestingly these comparisons are now accurate enough to reveal other (noninterstellar) sources of pickup ions. However the actual physical state of the ISM 10–20,000 A.U. ahead along the Sun trajectory, which will be the ambient interstellar medium in a few thousands years, remains unknown. Local Bubble hot gas or warm LIC-type gas? More EUV/UV spectroscopic data are needed to answer this question.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号