首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航空   3篇
  1997年   2篇
  1995年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Some of the considerations in the design of the telescope for FIRST are discussed. It is pointed out that instruments that operate at submillimetre wavelengths need to be analyzed with techniques derived from both the Radio and Optical/IR traditions. The issue of emissivity of reflector surfaces is also discussed.  相似文献   
2.
3.
Lei  F.  Dean  A. J.  Hills  G. L. 《Space Science Reviews》1997,82(3-4):309-388
The analysis of compact astronomical objects has generally dealt with the physical properties of the source within a two-parameter space, which is defined by the spectral characteristics and time variability. This approach often leads to the situation whereby two or more very different models can explain the observations successfully. Polarimetric observations have the diagnostic potential to discriminate between the different compact source models and can offer a unique insight into the geometrical nature of the emission zones. To date, however, no polarization observation in the gamma-ray energy domain has been successfully performed, due to the difficulties in making polarimetric measurements in this high-energy region of the spectrum. In this paper the polarized gamma-ray emission mechanisms are reviewed with the emphasis on their detectable characteristics. Potential astronomical sites in which these emission mechanisms may be at work are discussed. Observational results obtained in other wavebands and theoretical predications made for some of the most likely astronomical sources of polarization are reviewed. Compton polarimetry has long been used in the field of nuclear gamma-ray spectroscopy in the laboratory. The operational principle behind all generations of nuclear gamma-ray polarimeters has been to measure the asymmetry in the azimuthal distribution of the scattered photons. However none of the polarimeters designed for laboratory experiments will be sensitive enough to observe even the strongest astronomical source. In the past few years there have been a number of innovative developments aimed at the construction of astronomical gamma-ray polarimeters, either as dedicated experiments or in missions with polarimetric capability. The designs of all the polarimeters are based on either discrete or continuous position sensitive detector planes. In this paper the data analysis techniques associated with this type of polarimeter are discussed as well as methods of removing some of the systematic effects introduced by a non-ideal detector response function and observation conditions. Laboratory tests of these new polarimetric techniques are reviewed. They demonstrate the feasibility of building a suitably sensitive astronomical gamma-ray polarimeter. Optimization of the design of pixellated detector array based polarimeters is also addressed. The INTEGRAL mission, which is to be launched by ESA in the year 2001, is the most likely telescope to perform the first successful gamma-ray polarization observation. The polarimetric characteristics of the two main instruments on board INTEGRAL are evaluated and their sensitivities to a wide range of potentially polarized gamma-ray sources are estimated.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号