首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   1篇
航天技术   1篇
航天   2篇
  2011年   1篇
  2010年   1篇
  2005年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
We have studied a set of GRBs detected by HETE-2 satellite with special focus on low-energy part of the spectrum. Results of data reduction procedures of different members of the HETE collaboration were combined with other publicly available information creating a concise catalogue. A more detailed analysis of lightcurves of the prompt emission was performed using data from FREGATE instrument.  相似文献   
2.
Prolonged spaceflights are known to elicit changes in human cardiovascular, musculoskeletal, and nervous systems, whose functions are regulated by the thyroid gland. It is known that sphingomyelin metabolism is involved in apoptosis (programmed cell death) of thyroid cells induced by UVC radiation, but at present no data exists with regard to this phenomenon, which occurs during space missions. The aim of this study was to analyze, for the first time, the effect of spaceflight on the enzymes of sphingomyelin metabolism, sphingomyelinase, and sphingomyelin synthase, and to determine whether the ratio between the two enzymes might be used as a possible marker for thyroid activity during space missions. Both quiescent thyroid cells and thyroid cells stimulated to proliferate with thyrotropin (TSH) were cultured during the Eneide and Esperia missions on the International Space Station. The results show that during space missions the cells treated with TSH grew only 1.5?±?0.65-fold and, thus, behave similarly to quiescent cells, while on the ground the same cells, maintained in experimental conditions that reproduced those of the flight, grew 7.71?±?0.67-fold. Comparison of the sphingomyelinase/sphingomyelin-synthase ratio and the levels of Bax, STAT3, and RNA polymerase II in proliferating, quiescent, pro-apoptotic, or apoptotic cells demonstrated that thyroid cells during space missions were induced into a pro-apoptotic state. Given its specificity and the small amount of cells needed for analysis, we propose the use of the sphingomyelinase/sphingomyelin-synthase ratio as a marker of functional status of thyroid cells during space missions. Further studies could lead to its use in real time during prolonged spaceflights.  相似文献   
3.
The cratering event produced by the Deep Impact mission is a unique experimental opportunity, beyond the capability of Earth-based laboratories with regard to the impacting energy, target material, space environment, and extremely low-gravity field. Consequently, impact cratering theory and modeling play an important role in this mission, from initial inception to final data analysis. Experimentally derived impact cratering scaling laws provide us with our best estimates for the crater diameter, depth, and formation time: critical in the mission planning stage for producing the flight plan and instrument specifications. Cratering theory has strongly influenced the impactor design, producing a probe that should produce the largest possible crater on the surface of Tempel 1 under a wide range of scenarios. Numerical hydrocode modeling allows us to estimate the volume and thermodynamic characteristics of the material vaporized in the early stages of the impact. Hydrocode modeling will also aid us in understanding the observed crater excavation process, especially in the area of impacts into porous materials. Finally, experimentally derived ejecta scaling laws and modeling provide us with a means to predict and analyze the observed behavior of the material launched from the comet during crater excavation, and may provide us with a unique means of estimating the magnitude of the comet’s gravity field and by extension the mass and density of comet Tempel 1.  相似文献   
4.
We use one-dimensional (1D) atmospheric models coupled to a sulfate aerosol model to investigate climate forcing and short-term response to stratospheric sulfate aerosols produced by the reaction of S-bearing gases and water vapor released in the Chicxulub impact event. A 1D radiation model is used to assess the climate forcing due to the impact-related loading of S-bearing gases. The model suggests that a climate forcing 100 times larger than that from the Pinatubo volcanic eruption is associated with the Chicxulub impact event for at least 2 years after the impact. In particular, we find a saturation effect in the forcing, that is, there is no significant difference in the maximum forcing between the highest (approximately 300 Gt) and lowest (approximately 30 Gt) estimated stratospheric S-loading from the Chicxulub impact. However, higher S-loads increase the overall duration of the forcing by several months. We use a single column model for a preliminary investigation of the short-term climate response to the impact-related production of sulfate aerosols (the lack of horizontal feedbacks limits the usefulness of the single column model to the first few days after the impact). Compared with the present steady-state climate, the introduction of large amounts of sulfate aerosols in the stratosphere results in a significant cooling of the Earth's surface. A long-term climate response can only be investigated with the use of a three-dimensional atmospheric model, which allows for the atmospheric circulation to adjust to the perturbation. Overall, although the climate perturbation to the forcing appears to be relatively large, the geologic record shows no sign of a significant long-term climatic shift across the K/T boundary, which is indicative of a fast post-impact climatic recovery.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号