首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   2篇
  国内免费   4篇
航空   43篇
航天技术   38篇
航天   35篇
  2021年   6篇
  2019年   6篇
  2018年   10篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   10篇
  2013年   18篇
  2012年   2篇
  2011年   7篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   5篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1984年   1篇
  1983年   1篇
  1981年   4篇
  1978年   1篇
  1975年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有116条查询结果,搜索用时 171 毫秒
1.
The thermal resistance due to conductive heat transfer between two heat generating boxes mounted symmetrically on a thin mounting plate, one side of which is subjected to a constant heat flux and the opposite side is convectively cooled, is considered. The other two sides are maintained at constant temperature. A numerical solution for the temperature field is obtained and the heat transfer between the boxes is found by integrating between the critical heat flow lines. Various nondimensional parameters are identified and their influence on the thermal resistance is studied.  相似文献   
2.
Head-down tilt models have been used as ground-based simulations of microgravity. Our previous animal research has demonstrated that there are significant changes in fluid distribution within 2 h after placement in a 45 degrees head-down tilt (45HDT) position and these changes in fluid distribution were still present after 14 days of 45HDT. Consequently, we investigated changes in fluid distribution during recovery from 16 days of 45HDT. Changes in radioactive tracer distribution and organ/body weight ratio were examined in rats randomly assigned to a 45HDT or prone control group. The 45HDT rats were suspended for 16 days and then allowed to recover at the prone position 0, 77, 101, or 125 h post-suspension. Animals were injected with technetium-labeled diethylenetriamine pentaacetate (99mTcDTPA, MW=492 amu, physical half-life of 6.02 h) and then killed 30 min post-injection. Lungs, heart, liver, spleen, kidneys, and brain were harvested, weighed, and measured for radioactive counts. Statistical analyses included two-way analysis of variance (ANOVA) that compared 45HDT versus controls at the four experimental time points. The organ weight divided by the body weight ratio for the brain, heart, kidneys and liver in the 45HDT rats was significantly different than the control rats, regardless of time (treatment). There was no difference between the different time points (time). The average 99mTcDTPA count divided by the organ weight ratio values for the heart, liver, and spleen were significantly higher in the 45HDT group than the control group. The average counts for the heart and spleen were significantly higher at 77, 101, and 125 h than at time zero. We conclude that the major organs have different recovery patterns after 45HDT for 16 days in the rat.  相似文献   
3.
4.
MESSENGER: Exploring Mercury’s Magnetosphere   总被引:1,自引:0,他引:1  
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury offers our first opportunity to explore this planet’s miniature magnetosphere since the brief flybys of Mariner 10. Mercury’s magnetosphere is unique in many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands off the solar wind only ∼1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic particles and, hence, no radiation belts. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere, allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury’s interior may act to modify the solar wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects may be an important source of information on the state of Mercury’s interior. In addition, Mercury’s magnetosphere is the only one with its defining magnetic flux tubes rooted beneath the solid surface as opposed to an atmosphere with a conductive ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived, ∼1–2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury’s magnetic tail. Because of Mercury’s proximity to the sun, 0.3–0.5 AU, this magnetosphere experiences the most extreme driving forces in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and recycling of neutrals and ions among the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury’s magnetosphere are expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection, and pick-up of planetary ions all playing roles in the generation of field-aligned electric currents. However, these field-aligned currents do not close in an ionosphere, but in some other manner. In addition to the insights into magnetospheric physics offered by study of the solar wind–Mercury system, quantitative specification of the “external” magnetic field generated by magnetospheric currents is necessary for accurate determination of the strength and multi-polar decomposition of Mercury’s intrinsic magnetic field. MESSENGER’s highly capable instrumentation and broad orbital coverage will greatly advance our understanding of both the origin of Mercury’s magnetic field and the acceleration of charged particles in small magnetospheres. In this article, we review what is known about Mercury’s magnetosphere and describe the MESSENGER science team’s strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic, magnetosphere.  相似文献   
5.
Airspace safety and airport capacity are two key challenges to sustain the growth in Air Transportation. In this paper, we model the Air Transportation Network as two sub-networks of airspace and airports, such that the safety and capacity of the overall Air Transportation network emerge from the interaction between the two. We propose a safety-capacity trade-off approach,using a computational framework, where the two networks can inter-act and the trade-off between capacity and safety in an Air Transport Network can be established. The framework comprise of an evolutionary computation based air traffic scenario generation using a flow capacity estimation module(for capacity), Collision risk estimation module(for safety) and an air traffic simulation module(for evaluation). The proposed methodology to evolve air traffic scenarios such that it minimizes collision risk for given capacity estimation was tested on two different air transport network topologies(random and small-world) with the same number of airports. Experimental results indicate that though airspace collision risk increases almost linearly with the increasing flow(flow intensity) in the corresponding airport network, the critical flow depend on the underlying network configuration. It was also found that, in general, the capacity upper bound depends not only on the connectivity among airports and their individual performances but also the configuration of waypoints and mid-air interactions among conflicts. Results also show that airport network can accommodate more traffic in terms of capacity but the corresponding airspace network cannot accommodate the resulting traffic flow due to the bounds on collision risk.  相似文献   
6.
Space Science Reviews - Time measured by an ideal clock crucially depends on the gravitational potential and velocity of the clock according to general relativity. Technological advances in...  相似文献   
7.
This paper summarizes the modeling, simulation, and testing work related to the development of technology to investigate the potential that shape memory actuation has to provide mechanically simple and affordable solutions for delivering assets to a surface and for sample capture and possible return to Earth. We investigate the structural dynamics and controllability aspects of an adaptive beam carrying an end-effector which, by changing material equilibrium phases, is able to actively decouple the end-effector dynamics from the spacecraft dynamics during the surface contact phase. Asset delivery and sample capture and return are at the heart of several emerging potential missions to small bodies, such as asteroids and comets, and to the surface of large bodies, such as Titan.  相似文献   
8.
9.
Various plants have the ability to follow the sun with their flowers or leaves during the course of a day via a mechanism known as heliotropism. This mechanism is characterised by the introduction of pressure gradients between neighbouring motor cells in the plant?s stem, enabling the stem to bend. By adapting this bio-inspired mechanism to mechanical systems, a new class of smart structures can be created. The developed overall structure is made up of a number of cellular colonies, each consisting of a central pressure source surrounded by multiple cells. After launch, the cellular arrays are deployed in space and are either preassembled or alternatively are attached together during their release or afterwards. A central pressure source is provided by a high-pressure storage unit with an integrated valve, which provides ingress gas flow to the system; the gas is then routed through the system via a sequence of valve operations and cellular actuations, allowing for any desired shape to be achieved within the constraints of the deployed array geometry. This smart structure consists of a three dimensional adaptable cellular array with fluid controlling Micro Electromechanical Systems (MEMS) components enabling the structure to change its global shape. The proposed MEMS components include microvalves, pressure sensors, mechanical interconnect structures, and electrical routing. This paper will also give an overview of the system architecture and shows the feasibility and shape changing capabilities of the proposed design with multibody dynamic simulations. Example applications of this lightweight shape changing structure include concentrators, mirrors, and communications antennas that are able to dynamically change their focal point, as well as substructures for solar sails that are capable of steering through solar winds by altering the sails? subjected area.  相似文献   
10.
The measured D/H ratios in interstellar environments and in the solar system are reviewed. The two extreme D/H ratios in solar system water - (720±120)×10−6 in clay minerals and (88±11)×10−6 in chondrules, both from LL3 chondritic meteorites - are interpreted as the result of a progressive isotopic exchange in the solar nebula between deuterium-rich interstellar water and protosolar H2. According to a turbulent model describing the evolution of the nebula (Drouart et al., 1999), water in the solar system cannot be a product of thermal (neutral) reactions occurring in the solar nebula. Taking 720×10−6 as a face value for the isotopic composition of the interstellar water that predates the formation of the solar nebula, numerical simulations show that the water D/H ratio decreases via an isotopic exchange with H2. During the course of this process, a D/H gradient was established in the nebula. This gradient was smoothed with time and the isotopic homogenization of the solar nebula was completed in 106 years, reaching a D/H ratio of 88×10−6. In this model, cometary water should have also suffered a partial isotopic re-equilibration with H2. The isotopic heterogeneity observed in chondrites result from the turbulent mixing of grains, condensed at different epochs and locations in the solar nebula. Recent isotopic determinations of water ice in cold interstellar clouds are in agreement with these chondritic data and their interpretation (Texeira et al., 1999). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号