首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
航空   1篇
航天   1篇
  2014年   1篇
  1992年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
We have developed a qualitative calculus for three-dimensional directions and rotations. A direction is characterized in terms of the signs of its components relative to an absolute coordinate system. A rotation is characterized in terms of the signs of the components of the associated 3 × 3 rotation matrix.

A system has been implemented that can solve the following problems: 1. Given the signs of direction and rotation matrix P, find the possible signs of the image of under P. Moreover, for each possible sign vector of · P, generate numerical instantiations of and P that yields that result.

2. Given the signs of rotation matrices P and Q, find the possible signs of the composition P · Q. Moreover, for each possible sign matrix for the composition, generate numerical instantiations of P and Q that yield that result.

We have also proved some related complexity and expressivity results. The satisfiability problem for a qualitative rotation constraint network is NP-complete in two dimensions and NP-hard in three dimensions. In three dimensions, any two directions are distinguishable by a qualitative rotation constraint network.  相似文献   

2.
The questions of rotational maneuver and vibration stabilization of the NASA Spacecraft Control Laboratory Experiment (SCOLE) system is considered. The mathematical model of the SCOLE system includes the rigid body dynamics as well as the elastic dynamics representing transverse and torsional deformations of the elastic beam connecting the orbiter and end body (reflector). For the rotational maneuver, a new control law (orbiter control law) is derived using an orbiter input torque vector. Detumbling and reorientation maneuvers of the SCOLE system are accomplished using this control law; however, this excites the elastic modes of the beam. The orbiter control law asymptotically linearizes the flexible dynamics. Using the linearized model, a linear feedback control law is designed for vibration suppression. An observer is designed for estimating the state variables using sensor outputs which are also used for the synthesis of the control law. Simulation results are presented to show that in the closed-loop system detumbling and reorientation maneuvers can be accomplished and the effect of control and observation spillover is insignificant  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号