首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   2篇
航天技术   2篇
  2016年   1篇
  2013年   2篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 156 毫秒
1
1.
2.
Parameterization of dynamical and thermal effects of stationary orographic gravity waves (OGWs) generated by the Earth’s surface topography is incorporated into a numerical model of general circulation of the middle and upper atmosphere. Responses of atmospheric general circulation and characteristics of planetary waves at altitudes from the troposphere up to the thermosphere to the effects of OGWs propagating from the earth surface are studied. Changes in atmospheric circulation and amplitudes of planetary waves due to variations of OGW generation and propagation in different seasons are considered. It is shown that during solstices the main OGW dynamical and heat effects occur in the middle atmosphere of winter hemispheres, where changes in planetary wave amplitudes due to OGWs may reach up to 50%. During equinoxes OGW effects are distributed more homogeneously between northern and southern hemispheres.  相似文献   
3.
This paper presents an overview of experimental investigations on a 65 deg swept delta wing as part of the International Vortex Flow Experiment 2 (VFE-2). Results obtained in low-speed wind tunnel facilities include oil flow and laser light sheet flow visualization, mean and unsteady surface pressure distributions as well as mean and turbulent velocity components of the flow field and close to the wing surface. Thus, field and near wall distributions of all components of the Reynolds stress tensor are available. Details of the delta wing vortex structure and breakdown phenomenon are discussed and analyzed. Vortex bursting leads to specific spectral densities of velocity and surface pressure fluctuations characterized by narrow band distributions associated with the helical mode instability of the vortex breakdown flowfield. Further, special emphasis is on the occurrence of an inner vortex detected for the low Reynolds number and Mach number regime. This inboard vortex results from a laminar separation close to the apex due to the spanwise pressure gradient in the area of relatively large thickness while the classical leading-edge vortex progressing from the rear part to the apex is fed from the turbulent shear layers shed at the wing upper and lower side.  相似文献   
4.
In this article we model a Global Navigation Satellite System (GNSS) in a Schwarzschild space–time, as a first approximation of the relativistic geometry around the Earth. The closed time-like and scattering light-like geodesics are obtained analytically, describing respectively trajectories of satellites and electromagnetic signals. We implement an algorithm to calculate Schwarzschild coordinates of a GNSS user who receives proper times sent by four satellites, knowing their orbital parameters; the inverse procedure is implemented to check for consistency. The constellation of satellites therefore realizes a geocentric inertial reference system with no a priori realization of a terrestrial reference frame. We perform a simulation of position determination and show that the determination of the four coordinates with a 25–32 digit accuracy takes only around 60 ms. Effects of non-gravitational perturbations on positioning errors are assessed, and methods to reduce them are sketched. In particular, inter-links between satellites could greatly enhance stability and accuracy of the positioning system. Effects of gravitational perturbations are omitted in this paper in order to make a clearer comparison between the relativistic and non-relativistic scheme, but they will be included in subsequent work. We believe that the final algorithm will be a serious alternative to the usual post-Newtonian scheme.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号