首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   5篇
航空   7篇
  2024年   1篇
  2022年   1篇
  2020年   1篇
  2017年   1篇
  2014年   1篇
  2010年   1篇
  2002年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
金属基复合材料的强化机制   总被引:8,自引:0,他引:8  
复合材料的强化机制和强度预报一直是材料学的研究热点 ,因为这涉及到材料的组织设计问题。以往的研究对于金属基复合材料的强化机理有很多种说法 ,而且提出了大量的模型 ,但迄今为止缺乏一个统一而完善的理论。本文总结分析了近年来有关金属基复合材料的强化机制和一些相关的模型 ,并指出了这些强化机制的不足和以后的发展趋势  相似文献   
2.
铝基复合材料是近年来发展起来的一类先进工程材料,具有高的比强度和比模量,特别是这些复合材料各向同性,并且具有比Be更高的抗微小变形的能力和优异的尺寸稳定性,另外,还可以对这些材料进行热膨胀系数设计以便和其他材料匹配。由于这些材料可以大批量、稳定制备,且可以精密加工成复杂形状,使它们成为惯性仪表构件的理想材料。本文综述了近年来,惯性领域中仪表级复合材料国内外的应用研究现状,讨论了仪表级复合材料应用对惯性仪表精度提高所产生的积极作用。  相似文献   
3.
陀螺、加速度计等惯性器件是高精度传感器,对零件的微小变形有着极其敏感的反应。因此,惯性器件材料的尺寸稳定性问题一直是提高精度的关键。作者长期研究发现,惯性仪表精度及其稳定性在结构设计确定的情况下与加工、装配有关,但是本质性的因素是材料在长期温度扰动下的“变形”“变性”“变质”问题。我国关于惯性器件材料尺寸稳定性的研究十分薄弱,材料与工艺技术已经成为制约仪表精度的“卡脖子”问题。本文重点介绍了材料“变形”即在温度扰动下微纳变形的研究结果。首先分析了惯性器件的服役环境以及该服役环境下的材料响应,从而提出复合材料尺寸稳定性设计的基本原理。通过材料设计,为解决低频谐振、复杂结构热应力变形、动载荷弹性变形、长期静载荷微纳米级变形、长期储存下材料时效自发变形等问题提供了有效的材料设计方案。设计制备的仪表级SiC/Al复合材料在核心关键指标上优于铍材,在“高新工程”、“北斗工程”等重大工程中显示出优异的技术效果。  相似文献   
4.
针对下一代惯性仪表结构材料在应用中存在问题的现状,开展仪表级复合材料的应用研究,攻克了复合材料稳定化组分设计,高致密、大尺寸复合材料制备技术,尺寸稳定化评价技术和仪表级复合材料稳定化工艺四项关键技术,实现了仪表级SiCP/Al在惯性仪表结构件上的成功应用,分析了该材料应用于惯性仪表可能带来的效果,并指出了制约仪表级SiCP/Al在惯性仪表零部件上应用的问题。  相似文献   
5.
AlNiCo合金具有优异的温度稳定性和磁稳定性,在惯性仪表中广泛应用,其磁稳定性对于仪表的精度和寿命具有重要影响。AlNiCo合金中主要包括强磁性的α1相和弱磁性的α2相,通常情况下取向一致的α1相为磁体提供矫顽力和磁化强度。通过磁场热处理的方法控制α1相的取向,研究其对磁稳定性的影响规律,探索提高AlNiCo合金磁稳定性的新思路。研究发现,随机取向的AlNiCo-0样品虽然矫顽力和剩磁较低,但是具备更低的磁粘滞系数,稳定性优于各向异性的AlNiCo-0.25样品,这主要是由于其能垒分布更加平缓。微磁模拟的结果进一步表明,取向垂直于易轴的α1相更有助于形成稳定的磁畴结构。  相似文献   
6.
针对自然贮存时间为1年、4年、6年的Alnico8合金进行了显微组织与磁性能演化规律的研究,分析表明贮存时间为1年、4年、6年的Alnico8合金试样X射线衍射峰位置相同,但I_((100))/I_((200))随贮存时间的延长而增加,表明强磁相的有序度增加。富FeCo相也随着贮存时间的延长,尺寸大小更加均匀,相界面更加稳定。同时,不同自然贮存时间的Alnico8合金磁不可逆损失率不同,随着贮存时间的延长,Alnico8合金的磁不可逆损失率逐渐降低,磁稳定性逐渐增加。  相似文献   
7.
陀螺仪和加速度计等惯性仪表的精度对零组件的尺寸变化有着极其敏感的反应。随着对惯性仪表精度及其稳定性研究的深入,发现材料的尺寸不稳定是导致精度稳定性差的主要原因之一。以多种惯性仪表构件的常用材料为例,从材料学角度系统综述了微观缺陷、第二相、晶粒和织构、内应力以及环境因素对材料尺寸稳定性的影响规律,并提出了如何从材料内禀特性出发改善惯性仪表精度长期稳定性,展望了惯性仪表材料与工艺的未来发展方向。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号