首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   1篇
航空   130篇
航天技术   67篇
综合类   1篇
航天   59篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   5篇
  2018年   9篇
  2017年   4篇
  2015年   3篇
  2014年   7篇
  2013年   11篇
  2012年   7篇
  2011年   17篇
  2010年   15篇
  2009年   17篇
  2008年   12篇
  2007年   11篇
  2006年   8篇
  2005年   3篇
  2004年   4篇
  2003年   7篇
  2001年   7篇
  2000年   4篇
  1999年   7篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   11篇
  1992年   5篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   10篇
  1984年   8篇
  1983年   1篇
  1982年   1篇
  1981年   5篇
  1980年   1篇
  1979年   1篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   4篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1967年   2篇
  1966年   1篇
排序方式: 共有257条查询结果,搜索用时 15 毫秒
1.
A coherent CW superheterodyne radar system operating at frequencies of 9, 17, 35, and 70 GHz is described. The radars are installed on a free-flight range to study backscattering from wakes of hypersonic-velocity projectiles. Each radar is equipped with a focused-lens antenna oriented at an angle of approximately 45° to the flight axis. Amplitude and phase of the received signal are recorded separately. Some typical results are given to demonstrate the capabilities of the equipment.  相似文献   
2.
Layers of dormant endospores of Bacillus subtilis HA101 were applied to eight different spacecraft materials and exposed to martian conditions of low pressure (8.5 mbar), low temperature (-10 degrees C), and high CO(2) gas composition and irradiated with a Mars-normal ultraviolet (UV-visible- near-infrared spectrum. Bacterial layers were exposed to either 1 min or 1 h of Mars-normal UV irradiation, which simulated clear-sky conditions on equatorial Mars (0.1 tau). When exposed to 1 min of Mars UV irradiation, the numbers of viable endospores of B. subtilis were reduced three to four orders of magnitude for two brands of aluminum (Al), stainless steel, chemfilm-treated Al, clear-anodized Al, and black-anodized Al coupons. In contrast, bacterial survival was reduced only one to two orders of magnitude for endospores on the non-metal materials astroquartz and graphite composite when bacterial endospores were exposed to 1 min of Mars UV irradiation. When bacterial monolayers were exposed to 1 h of Mars UV irradiation, no viable bacteria were recovered from the six metal coupons listed above. In contrast, bacterial survival was reduced only two to three orders of magnitude for spore layers on astroquartz and graphite composite exposed to 1 h of Mars UV irradiation. Scanning electron microscopy images of the bacterial monolayers on all eight spacecraft materials revealed that endospores of B. subtilis formed large aggregates of multilayered spores on astroquartz and graphite composite, but not on the other six spacecraft materials. It is likely that the formation of multilayered aggregates of endospores on astroquartz and graphite composite is responsible for the enhanced survival of bacterial cells on these materials.  相似文献   
3.
Remote sensing of agricultural land permits crop classification and mensuration which can lead to improved forecasts of production. This technique is particularly important for nations which do not already have an accurate agricultural reporting system. Better forecasts have important economic effects. International grain traders can make better decisions about when to store, buy and sell. Farmers can make better planting decisions by taking advantage of production estimates for areas out of phase with their own agricultural calendar. World economic benefits will accrue to both buyers and sellers because of increased food supply and price stabilization.

This paper reviews the econometric models used to establish this scenario and estimates the dollar value of benefits for world wheat as 200 million dollars annually for the United States and 300–400 million dollars anually for the rest of the world.  相似文献   

4.
Africano  John  Schildknecht  Thomas  Matney  Mark  Kervin  Paul  Stansbery  Eugene  Flury  Walter 《Space Debris》2000,2(4):357-369
Since more than 10 years there is evidence that small-size space debris is accumulating in the geosynchronous orbit (GEO), probably as the result of breakups. Two break-ups have been reported in GEO. The 1978 break-up of an EKRAN 2 satellite, SSN 10365, was identified in 1992, and in 1992 a Titan 3C Transtage, SSN 3432, break-up produced at least twenty observable pieces. Subsequently several nations performed optical surveys of the GEO region in the form of independent observation campaigns. Such surveys suffer from the fact that the field of view of optical telescopes is small compared with the total area covered by the GEO ring. As a consequence only a small volume of the orbital element-magnitude-space is covered by each individual survey. Results from these surveys are thus affected by observational biases and therefore difficult to compare. This paper describes the development of a common search strategy to overcome these limitations. The strategy optimizes the sampling for objects in orbits similar to the orbits of the known GEO population but does not exclude the detection of objects with other orbital planes. A properly designed common search strategy clearly eases the comparison of results from different groups and the extrapolation from the sparse (biased) samples to the entire GEO environment.  相似文献   
5.
The Space Shuttle Orbiter employs a fly-by-wire control system of 200 major avionic hardware devices interfacing with five flight computers through a complex data bus system. Responses to man-in-the-loop commands are dependent on the flight software. Early program development testing of the computer and avionic hardware has been accomplished at Rockwell International's Shuttle Avionics Development Laboratory (ADL). Hardware development has led to complete multi-string system testing and flight software evaluations. This paper provides an overview of the ADL. Its role and test capabilities in support of Shuttle development are defined. The nature of computer driven test programs for the Orbiter displays, the Digital Autopilot, and flight software development describe the test bed provided by the ADL.  相似文献   
6.
The existence of a “dense” lunar ionosphere has been controversial for decades. Positive ions produced from the lunar surface and exosphere are inferred to have densities that are ?106107 m?3 near the surface and smaller at higher altitudes, yet electron densities derived from radio occultation measurements occasionally exceed these values by orders of magnitude. For example, about 4% of the single-spacecraft radio occultation measurements from Kaguya/SELENE were consistent with peak electron densities of ~3×108 m?3. Space plasmas should be neutral on macroscopic scales, so this represents a substantial discrepancy. Aditional observations of electron densities in the lunar ionosphere are critical to resolving this longstanding paradox. Here we theoretically assess whether radio occultation observations using two-way coherent S-band radio signals from the Lunar Reconnaissance Orbiter (LRO) spacecraft could provide useful measurements of electron densities in the lunar ionosphere. We predict the uncertainty in a single LRO radio occultation measurement of electron density to be ~3×108 m?3, comparable to occasional observations by Kaguya/SELENE of a dense lunar ionosphere. Thus an individual profile from LRO is unlikely to reliably detect the lunar ionosphere; however, averages of multiple (~10) LRO profiles acquired under similar geophysical and viewing conditions should be able to make reliable detections. An observing rate of six ingress occultations per day (~2000 per year) could be achieved with minimal impact on current LRO operations. This rate compares favorably with the 378 observations reported from the single-spacecraft experiment on Kaguya/SELENE between November 2007 and June 2009. The large number of observations possible for LRO would be sufficient to permit wide-ranging investigations of spatial and temporal variations in the poorly understood lunar ionosphere. These findings strengthen efforts to conduct such observations with LRO.  相似文献   
7.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
8.
A general method of continually restructuring an optimum Bayes-Kalman tracking filter is proposed by conceptualizing a growing tree of filters to maintain optimality on a target exhibiting maneuver variables. This tree concept is then constrained from growth by quantizing the continuously sensed maneuver variables and restricting these to a small value from which an average maneuver is calculated. Kalman filters are calculated and carried in parallel for each quantized variable. This constrained tree of several parallel Kalman filters demands only modest om; puter time, yet provides very good performance. This concept is implemented for a Doppler tracking system and the performance is compared to an extended Kalman filter. Simulation results are presented which show dramatic tracking improvement when using the adaptive tracking filter.  相似文献   
9.
We highlight how the downward revision in the distance to the star cluster associated with SGR 1806–20 by Bibby et al. (2008) reconciles the apparent low contamination of BATSE short GRBs by intense flares from extragalactic magnetars without recourse to modifying the frequency of one such flare per 30 years per Milky Way galaxy. We also discuss the variety in progenitor initial masses of magnetars based upon cluster ages, ranging from ∼50 M for SGR 1806–20 and AXP CXOU J164710.2–455216 in Westerlund 1 to ∼17 M for SGR 1900+14 according to Davies et al. (2009) and presumably also 1E 1841–045 if it originated from one of the massive RSG clusters #2 or #3.  相似文献   
10.
ASTROSAT     
The ASTROSAT satellite is an Indian National Space Observatory under development in India. Due for launch in 2010, ASTROSAT will carry a complement of five scientific instruments enabling simultaneous observations from the optical through to the hard X-ray energy band. This capability will enable broad-band spectroscopy and high time-resolution monitoring of both galactic and extra-galactic targets, such as X-ray binaries and AGN. One of the instruments is being built in collaboration with the Canadian Space Agency and another in collaboration with the University of Leicester. ASTROSAT also carries a scanning sky monitor to observe the variable X-ray sky. After an initial period of science verification and guaranteed time, a certain fraction of ASTROSAT observing time will also be made available to the community via a call for proposals. Here I summarise the instrument complement and principle scientific objectives of the mission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号