首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
航天技术   9篇
  2013年   1篇
  2009年   1篇
  2003年   1篇
  2001年   2篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Plant seedlings exhibit automorphogenesis on clinostats. The occurrence of automorphogenesis was confirmed under microgravity in Space Shuttle STS-95 flight. Rice coleoptiles showed an inclination toward the caryopsis in the basal region and a spontaneous curvature in the same adaxial direction in the elongating region both on a three-dimensional (3-D) clinostat and in space. Both rice roots and Arabidopsis hypocotyls also showed a similar morphology in space and on the 3-D clinostat. In rice coleoptiles, the mechanisms inducing such an automorphic curvature were studied. The faster-expanding convex side of rice coleoptiles showed a higher extensibility of the cell wall than the opposite side. Also, in the convex side, the cell wall thickness was smaller, the turnover of the matrix polysaccharides was more active, and the microtubules oriented more transversely than the concave side, and these differences appear to be causes of the curvature. When rice coleoptiles grown on the 3-D clinostat were placed horizontally, the gravitropic curvature was delayed as compared with control coleoptiles. In clinostatted coleoptiles, the corresponding suppression of the amyloplast development was also observed. Similar results were obtained in Arabidopsis hypocotyls. Thus, the induction of automorphogenesis and a concomitant decrease in graviresponsiveness occurred in plant shoots grown under microgravity conditions.  相似文献   
2.
Airtight vessels have various advantages for space experiments. However, Arabidopsis thaliana plants scarcely produced seeds when grown in such vessels. The mechanism by which reproductive growth is inhibited in airtight vessels was studied. The length of the flower stalk was shorter when the plants were grown in airtight vessels. Thus, there was a possibility that the inhibition of reproductive growth was due to the inhibition of vegetative growth. However, even when the plants which has grown under non-airtight conditions and has reached to the flowering stage were transferred to airtight vessels, silique formation was inhibited, suggesting that the airtight environment directly influences reproductive growth. In airtight vessels, anther dehiscence was inhibited, which appears to be the cause of inhibition of silique formation and seed development. Reproductive growth recovered when silica gel was added to the vessels. These results suggest that in airtight vessels, high humidity causes a suppression of anther dehiscence, resulting in the inhibition of reproductive growth. Therefore, the control of humidity by ventilation should be taken into consideration in designing a growth chamber for space experiments.  相似文献   
3.
Activity of auxin polar transport in inflorescence axes of Arabidopsis thaliana grown under simulated microgravity conditions was studied in relation to the growth and development. Seeds were germinated and allowed to grow on an agar medium in test tubes on a horizontal clinostat. Horizontal clinostat rotation substantially reduced the growth of inflorescence axes and the productivity of seeds of Arabidopsis thaliana (ecotypes Landsberg erecta and Columbia), although it little affected seed germination, development of rosette leaves and flowering. The activity of auxin polar transport in inflorescence axes decreased when Arabidopsis plants were grown on a horizontal clinostat from germination stage, being ca. 60% of 1 g control. On the other hand, the auxin polar transport in inflorescence axes of Arabidopsis grown in 1 g conditions was not affected when the segments were exposed to various gravistimuli, including 3-dimensional clinorotation, during transport experiments. Pin-formed mutant of Arabidopsis, having a unique structure of the inflorescence axis with no flower and extremely low levels of the activity of auxin polar transport in inflorescence axes and endogenous auxin, did not continue its vegetative growth under clinostat rotation. These facts suggest that the development of the system of auxin polar transport in Arabidopsis is affected by microgravity, resulting in the inhibition of growth and development, especially during reproductive growth.  相似文献   
4.
Growth of dark-grown Arabidopsis hypocotyls was suppressed under hypergravity conditions (300 g), or was stimulated under microgravity conditions in space (Space Shuttle STS-95). The mechanical extensibility of cell walls decreased and increased under hypergravity and microgravity conditions, respectively. The amounts of cell wall polysaccharides (pectin, hemicellulose-I, hemicellulose-II and cellulose) per unit length of hypocotyls increased under hypergravity conditions, and decreased under microgravity conditions. The amount and the molecular mass of xyloglucans also increased under the hypergravity conditions, while those decreased under microgravity conditions. The activity of xyloglucan-degrading enzymes extracted from hypocotyl cell walls decreased and increased under hypergravity and microgravity conditions, respectively. These results indicate that the amount and the molecular mass of xyloglucans are affected by the magnitude of gravity and that such changes are caused by changes in xyloglucan-degrading activity. Modifications of xyloglucan metabolism as well as the thickness of cell walls by gravity stimulus may be the primary event determining the cell wall extensibility, thereby regulating the growth rate of Arabidopsis hypocotyls.  相似文献   
5.
Hypergravity stimuli, gravitational acceleration of more than 1 x g, decrease the growth rate of azuki bean epicotyls and maize coleoptiles and mesocotyls by decreasing the cell wall extensibility via an increase in the molecular mass of matrix polysaccharides. An increase in the pH in the apoplastic fluid is hypothesized to be involved in the processes of the increase in the molecular mass of matrix polysaccharides due to hypergravity. However, whether such physiological changes by hypergravity are induced by normal physiological responses or caused by physiological damages have not been elucidated. In the present study, we examined the effects of the removal of hypergravity stimuli on growth and the cell wall properties of azuki bean and maize seedlings to clarify whether the effects of hypergravity stimuli on growth and the cell wall properties are reversible or irreversible. When the seedlings grown under hypergravity conditions at 300 x g for several hours were transferred to 1 x g conditions, the growth rate of azuki bean epicotyls and maize coleoptiles and mesocotyls greatly increased within a few hours. The recovery of growth rate of these organs was accompanied by an immediate increase in the cell wall extensibility, a decrease in the molecular mass of matrix polysaccharides, and an increase in matrix polysaccharide-degrading activities. The apoplastic pH also decreased promptly upon the removal of hypergravity stimuli. These results suggest that plants regulate the growth rate of shoots reversibly in response to hypergravity stimuli by changing the cell wall properties, by which they adapt themselves to different gravity conditions. This study also revealed that changes in growth and the cell wall properties under hypergravity conditions could be recognized as normal physiological responses of plants. In addition, the results suggest that the effects of microgravity on plant growth and cell wall properties should be reversible and could disappear promptly when plants are transferred from microgravity to 1 x g. Therefore, plant materials should be fixed or frozen on orbit for detecting microgravity-induced changes in physiological parameters after recovering the materials to earth in space experiments.  相似文献   
6.
7.
A three-dimensional (3-D) clinostat equipped with two rotation axes placed at right angles was constructed, and various growth processes of higher plants grown on this clinostat were compared with ground controls, with plants grown on the conventional horizontal clinostat, and with those under real microgravity in space. On the 3-D clinostat, cress roots developed a normal root cap and the statocytes showed the typical polar organization except a random distribution of statoliths. The structural features of clinostatted statocytes were fundamentally similar to those observed under real microgravity. The graviresponse of cress roots grown on the 3-D clinostat was the same as the control roots. On the 3-D clinostat, shoots and roots exhibited a spontaneous curvature as well as an altered growth direction. Such an automorphogenesis was sometimes exaggerated when plants were subjected to the horizontal rotation, whereas the curvature was suppressed on the vertical rotation. These discrepancies in curvature between the 3-D clinostat and the conventional ones appear to be brought about by the centrifugal force produced. Thus, the 3-D clinostat was proven as a useful device to simulate microgravity.  相似文献   
8.
In 2004, Japan Aerospace Exploration Agency developed the engineered model of the Plant Experiment Unit and the Cell Biology Experiment Facility. The Plant Experiment Unit was designed to be installed in the Cell Biology Experiment Facility and to support the seed-to-seed life cycle experiment of Arabidopsis plants in space in the project named Space Seed. Ground-based experiments to test the Plant Experiment Unit showed that the unit needed further improvement of a system to control the water content of a seedbed using an infrared moisture analyzer and that it was difficult to keep the relative humidity inside the Plant Experiment Unit between 70 and 80% because the Cell Biology Experiment Facility had neither a ventilation system nor a dehumidifying system. Therefore, excess moisture inside the Cell Biology Experiment Facility was removed with desiccant bags containing calcium chloride. Eight flight models of the Plant Experiment Unit in which dry Arabidopsis seeds were fixed to the seedbed with gum arabic were launched to the International Space Station in the space shuttle STS-128 (17A) on August 28, 2009. Plant Experiment Unit were installed in the Cell Biology Experiment Facility with desiccant boxes, and then the Space Seed experiment was started in the Japanese Experiment Module, named Kibo, which was part of the International Space Station, on September 10, 2009 by watering the seedbed and terminated 2 months later on November 11, 2009. On April 19, 2010, the Arabidopsis plants harvested in Kibo were retrieved and brought back to Earth by the space shuttle mission STS-131 (19A). The present paper describes the Space Seed experiment with particular reference to the development of the Plant Experiment Unit and its actual performance in Kibo onboard the International Space Station. Downlinked images from Kibo showed that the seeds had started germinating 3 days after the initial watering. The plants continued growing, producing rosette leaves, inflorescence stems, flowers, and fruits in the Plant Experiment Unit. In addition, the senescence of rosette leaves was found to be delayed in microgravity.  相似文献   
9.
On a three-dimensional (3-D) clinostat, various plant organs developed statocytes capable of responding to the gravity vector. The graviresponse of primary roots of garden cress and maize grown on the clinostat was the same as the control roots, whereas that of maize coleoptiles was reduced. When maize seedlings were grown in the presence of 10(-4) M gibberellic acid and kinetin, the graviresponse of both roots and shoots was suppressed. The corresponding suppression of amyloplast development was observed in the clinostatted and the hormone-treated seedlings. Maize roots and shoots showed spontaneous curvatures in different portions on the 3-D clinostat. The hormone treatment did not significantly influence such an automorphic curvature. When the root cap was removed, maize roots did not curve gravitropically. However, the removal suppressed the automorphic curvatures only slightly. On the other hand, the removal of coleoptile tip did not influence its graviresponse, whereas the spontaneous curvature of decapitated coleoptiles on the clinostat was strongly suppressed. Also, cytochalasin B differently affected the gravitropic and the automorphic curvatures of maize roots and shoots. From these results it is concluded that the graviperception and the early processes of signal transmission are unnecessary for automorphoses under simulated microgravity conditions. Moreover, the results support the view that the amyloplasts act as statoliths probably via an interaction with microfilaments.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号