首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
航天技术   15篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2014年   2篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
The responses of the ionospheric F region using GPS–TEC measurements during two moderate geomagnetic storms at equatorial, low-, and mid-latitude regions over the South American and African sectors in May 2010, during the ascending phase of solar cycle 24, are investigated. The first moderate geomagnetic storm studied reached a minimum Dst value of −64 nT at 1500 UT on 02 May 2010 and the second moderate geomagnetic storm reached a minimum Dst value of −85 nT at 1400 UT on 29 May 2010. In this paper, we present vertical total electron content (VTEC) and phase fluctuations (in TECU/min) from Global Positioning System (GPS) observations from the equatorial to mid-latitude regions in the South American and African sectors. Our results obtained during these two moderate geomagnetic storms from both sectors show significant positive ionospheric storms during daytime hours at the equatorial, low-, and mid-latitude regions during the main and recovery phases of the storms. The thermospheric wind circulation change towards the equator is a strong indicator that suggests an important mechanism is responsible for these positive phases at these regions. A pre-storm event that was observed in the African sector from low- to the mid-latitude regions on 01 May 2010 was absent in the South American sector. This study also showed that there was no generation or suppression of ionospheric irregularities by storm events. Therefore, knowledge about the suppression and generation of ionospheric irregularities during moderate geomagnetic storms is still unclear.  相似文献   
2.
In this investigation, we present and discuss the response of the ionospheric F-region in the South American and East Asian sectors during an intense geomagnetic storm in August 2005. The geomagnetic storm studied reached a minimum Dst of −216 nT at 12:00 UT on 24 August. In this work ionospheric sounding data obtained of 24, 25, and 26 August 2005 at Palmas (PAL; 10.2° S, 48.2° W; dip latitude 6.6° S), São José dos Campos (SJC, 23.2° S, 45.9° W; dip latitude 17.6° S), Brazil, Ho Chi Minh City, (HCM; 10.5° N, 106.3° E; dip latitude 2.9° N), Vietnam, Okinawa (OKI; 26.3° N, 127.8° E; dip latitude 21.2° N), Japan, are presented. Also, the GPS observations obtained at different stations in the equatorial and low-latitude regions in the Brazilian sector are presented. On the night of 24–25 August 2005, the h′F variations show traveling ionospheric disturbances associated with Joule heating in the auroral zone from SJC to PAL. The foF2 variations show a positive storm phase on the night of 24–25 August at PAL and SJC during the recovery phase. Also, the GPS-VTEC observations at several stations in the Brazilian sector show a fairly similar positive storm phase on 24 August. During the fast decrease of Dst (between 10:00 and 11:00 UT) on 24 August, there is a prompt penetration of electric field of magnetospheric origin that result in abrupt increase (∼12:00 UT) in foF2 at PAL, SJC (Brazil) and OKI (Japan) and in VTEC at IMPZ, BOMJ, PARA and SMAR (Brazil). OKI showed strong oscillations of the F-region on the night 24 August resulted to the propagation of traveling atmospheric disturbances (TADs) by Joule heating in the auroral region. These effects result a strong positive observed at OKI station. During the daytime on 25 August, in the recovery phase, the foF2 observations showed positive ionospheric storm at HCM station. Some differences in the latitudinal response of the F-region is also observed in the South American and East Asian sectors.  相似文献   
3.
This investigation uses simultaneous observations from all-sky imager system and an ionosonde collocated at Araguatins (5.65° S, 48.07° W and dip-latitude of 4.17° S), a near-equatorial region in Brazil. These simultaneous observations were used to investigate the occurrence of plasma bubbles and blobs in the field of the imaging system and their association with atypical range Spread-F signature in ionograms. Also, in-situ observation of plasma density from Swarm satellites were used to support the ground-based observations. Using a few cases, a methodology will be established to identify in the plasma blobs (atypical ESF) in the ionograms when there is the simultaneous observation of plasma bubbles and blobs in the field of view of the ionosonde. For this purpose, simultaneous sequence of OI 630.0 nm nightglow images and ionograms are presented for different case studies; 1. when there is the absence of a plasma bubble or blob, 2. when there is only the occurrence of plasma bubbles and 3. when there is the occurrence of plasma bubbles and blobs, in order to compare traces in the ionogram in all these case studies. With these we can cover all kinds of signatures in the ionograms corresponding to no irregularities, plasma bubbles only and plasma bubbles-blobs. These OI 630.0 nm nightglow and ionograms recorded simultaneously make it possible to establish a novel methodology to recognize in ionograms cases when there is the occurrence of Spread-F signature associated with bubble-blob in the FOV of the ionosonde.  相似文献   
4.
The occurrence of an additional F3-layer has been reported at Brazilian, Indian and Asian sectors by several investigators. In this paper, we report for the first time the seasonal variations of F3-layer carried out near the southern crest of the equatorial ionospheric anomaly (EIA) at São José dos Campos (23.2°S, 45.0°W; dip latitude 17.6°S – Brazil) as a function of solar cycle. The period from September 2000 to August 2001 is used as representative of high solar activity (HSA) and the period from January 2006 to December 2006 as representative of low solar activity (LSA). This investigation shows that during HSA there is a maximum occurrence of F3-layer during summer time and a minimum during winter time. However, during LSA, there is no seasonal variation in the F3-layer occurrence. Also, the frequency of occurrence of the F3-layer during HSA is 11 times more than during LSA.  相似文献   
5.
The main objective of the present investigation has been to compare the ionospheric parameters (NmF2 and hmF2) observed by two ground-based ionospheric sounders (one at PALMAS- located near the magnetic equator and the other at Sao Jose dos Campos-located in the low-latitude region) in the Brazilian sector with that by the satellite FORMOSAT-3/COSMIC radio occultation (RO) measurements during two geomagnetic storms which occurred in December 2006 and July 2009. It should be pointed out that in spite of increasing the latitude (to 10°) and longitude (to 20°) around the stations; we had very few common observations. It has been observed that both the peak electron density (NmF2) and peak height (hmF2) observed by two different techniques (space-borne COSMIC and ground-based ionosondes) during both the geomagnetic storm events compares fairly well (with high correlation coefficients) at the two stations in the Brazilian sector. It should be pointed out that due to equatorial spread F (ESF) in the first storm (December 2006) and no-reflections from the ionosphere during nighttime in the second storm (July 2009), we had virtually daytime data from the two ionosondes.  相似文献   
6.
The vertical total electron content (VTEC) time series obtained at São José dos Campos (23.2°S, 45.9°W), Brazil, were statistically analyzed to study the low latitude ionosphere in the Brazilian sector during the year of 2006 (a period of low solar activity). Statistical analysis showed that Probability Density Functions (PDFs) and kurtosis have an intermittent behavior on small-scales (periods from minutes to one day) and presence of two functions on large-scales (periods from 3 to 30 days). The skewness result suggests the presence of some kind of waves due to the action of tropospheric sources (lower atmospheric origin). Results obtained by wavelet transform show strong oscillations with scale-sizes between 3 and 30 days, possibly associated with the planetary oscillations. According to these statistical and wavelet analyses we conjecture that there exist two important factors regarding the ionospheric effects: one factor is due to turbulent states found in small scales and the other factor consists in a more or less deterministic state provided by planetary waves (3–16 days or full solar rotation (27–28 days)). Further, these strong oscillations were also noted in multifractal analysis. We found a decrease of multifractality degree of the same scale-sizes.  相似文献   
7.
The electrodynamics of the ionosphere in the tropical region presents various scientific aspects, which remain subject of intensive investigations and debates by the scientific community. During the year 2002, in a joint project between the Universidade do Vale do Paraíba (UNIVAP) and Universidade Luterana do Brasil (ULBRA), a chain of three Canadian Advanced Digital Ionosondes (CADIs) was established nearly along the geomagnetic meridian direction, for tropical ionospheric studies, such as, changes and response due to geomagnetic disturbances and thermosphere–ionosphere coupling and the generation and dynamics of ionospheric irregularities, in the Brazilian sector. The locations of the three ionosondes stations are São José dos Campos (23.2°S, 45.9°W, dip latitude 17.6°S – under the southern crest of equatorial ionospheric anomaly), Palmas (10.2°S, 48.2°W, dip latitude 5.5°S – near the magnetic equator) and Manaus (2.9°S, 60.0°W, dip latitude 6.4°N – between the geographic and geomagnetic dip equators). It should be pointed out that Palmas and Manaus are located on the opposite sides of the magnetic equator but both are south of the geographic equator. The three CADIs work in time-synchronized mode and obtain ionograms every 5 min. This configuration of the ionospheric sounding stations allowed us to study the F-region dynamics during geomagnetically disturbed period in the meridional direction. Just after the installation and testing of the three CADIs, on September 05, 2002 a coronal mass ejection (CME) left the Sun and about 2 days after the CME left the Sun, it reached the Earth’s magnetosphere and complex and multi step events took place during the period September 07–09. In the study we note that the equatorial stations located north (Manaus, dip latitude 6.4°N) and south (Palmas, dip latitude 5.5°S) of the dip equator presented significant F-layer height asymmetries during the storm main phase. In addition, the low-latitude station SJC (dip latitude 17.6°S) presented decrease in the F-layer densities (negative phase), whereas Palmas presented increase in the F-layer densities (positive phase) during the main phase. This was followed by positive phase at both the stations. During the first night of the recovery phase a strong formation and evolution of large-scale ionospheric irregularities (equatorial spread-F (ESF)) was observed, but on the second night of the recovery phase, there was strong and almost simultaneous sporadic E (Es) formation at all three stations. During the presence of Es, spread-F formation is not observed, indicating the suppression of spread-F, possibly by sporadic E.  相似文献   
8.
This paper is focused on unusual nighttime impulsive electron density enhancements that are rarely observed at low latitudes on a wide region of South America, under quiet and medium/high geomagnetic conditions. The phenomenon under investigation is very peculiar because besides being of brief duration, it is characterized by a pronounced compression of the ionosphere. The phenomenon was studied and analyzed using both the F2 layer critical frequency (foF2) and the virtual height of the base of the F region (h′F) values recorded at five ionospheric stations widely distributed in space, namely: Jicamarca (−12.0°, −76.8°, magnetic latitude −2.0°), Peru; Sao Luis (−2.6°, −44.2°, magnetic latitude +6.2°), Cachoeira Paulista (−22.4°, −44.6°, magnetic latitude −13.4°), and São José dos Campos (−23.2°, −45.9°, magnetic latitude −14.1°), Brazil; Tucumán (−26.9°, −65.4°, magnetic latitude −16.8°), Argentina. In a more restricted region over Tucumán, the phenomenon was also investigated by the total electron content (TEC) maps computed by using measurements from 12 GPS receivers. A detailed analysis of isoheight ionosonde plots suggests that traveling ionospheric disturbances (TIDs) caused by gravity wave (GW) propagation could play a significant role in causing the phenomenon both for quiet and for medium/high geomagnetic activity; in the latter case however a recharging of the fountain effect, due to electric fields penetrating from the magnetosphere, joins the TID propagation and plays an as much significant role in causing impulsive electron density enhancements.  相似文献   
9.
In this paper, we have investigated the responses of the ionospheric F region at equatorial and low latitude regions in the Brazilian sector during the super geomagnetic storm on 15–16 May 2005. The geomagnetic storm reached a minimum Dst of −263 nT at 0900 UT on 15 May. In this paper, we present vertical total electron content (vTEC) and phase fluctuations (in TECU/min) from Global Positioning System (GPS) observations obtained at Belém, Brasília, Presidente Prudente, and Porto Alegre, Brazil, during the period 14–17 May 2005. Also, we present ionospheric parameters h’F, hpF2, and foF2, using the Canadian Advanced Digital Ionosonde (CADI) obtained at Palmas and São José dos Campos, Brazil, for the same period. The super geomagnetic storm has fast decrease in the Dst index soon after SSC at 0239 UT on 15 May. It is a good possibility of prompt penetration of electric field of magnetospheric origin resulting in uplifting of the F region. The vTEC observations show a trough at BELE and a crest above UEPP, soon after SSC, indicating strengthening of nighttime equatorial anomaly. During the daytime on 15 and 16 May, in the recovery phase, the variations in foF2 at SJC and the vTEC observations, particularly at BRAZ, UEPP, and POAL, show large positive ionospheric storm. There is ESF on the all nights at PAL, in the post-midnight (UT) sector, and phase fluctuations only on the night of 14–15 May at BRAZ, after the SSC. No phase fluctuations are observed at the equatorial station BELE and low latitude stations (BRAZ, UEPP, and POAL) at all other times. This indicates that the plasma bubbles are generated and confined on this magnetically disturbed night only up to the low magnetic latitude and drifted possibly to west.  相似文献   
10.
Nighttime thermospheric meridional winds aligned to the magnetic meridian have been inferred using hF and hpF2 ionosonde data taken from two equatorial stations, Manaus (2.9°S, 60.0°W, dip latitude 6.0°N) and Palmas (10.17°S, 48.2°W, dip latitude 6.2°S), and one low-latitude station, Sao Jose dos Campos (23.21°S, 45.86°W, dip latitude 17.26°S), during geomagnetic quiet days of August and September, 2002. Using an extension of the ionospheric servo model and a simple formulation of the diffusive vertical drift velocity, the magnetic meridional component of the thermospheric neutral winds is inferred, respectively, at the peak (hpF2) and at the base (hF) heights of the F region over Sao Jose dos Campos. An approach has been included in the models to derive the effects of the electrodynamic drift over Sao Jose dos Campos from the time derivative of hpF2 and hF observed at the equatorial stations. The magnetic meridional winds inferred from the two methods, for the months of August and September, are compared with winds calculated using the HWM-90 model and with measurements from Fabry–Perot technique. The results show varying agreements and disagreements. Meridional winds calculated from hpF2 ionospheric data (servo model) may produce errors of about 59 m/s, whereas the method calculated from the F-region base height (hF) ionospheric data gives errors of about 69 m/s during the occurrence of equatorial spread-F.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号