首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nighttime ionosphere–thermosphere coupling observed during an intense geomagnetic storm
Authors:PR Fagundes  MTAH Muella  JA Bittencourt  Y Sahai  WLC Lima  FL Guarnieri  F Becker-Guedes  VG Pillat  AS Ferreira  NS Lima
Institution:1. Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi, 2911, 12244-395 São José dos Campos, SP, Brazil;2. Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, SP, Brazil;3. Centro Universitário Luterano de Palmas (CEULP), Universidade Luterana do Brasil (ULBRA), Palmas, TO, Brazil;4. Centro Universitário Luterano de Manaus (CEULM), Universidade Luterana do Brasil (ULBRA), Manaus, AM, Brazil
Abstract:The electrodynamics of the ionosphere in the tropical region presents various scientific aspects, which remain subject of intensive investigations and debates by the scientific community. During the year 2002, in a joint project between the Universidade do Vale do Paraíba (UNIVAP) and Universidade Luterana do Brasil (ULBRA), a chain of three Canadian Advanced Digital Ionosondes (CADIs) was established nearly along the geomagnetic meridian direction, for tropical ionospheric studies, such as, changes and response due to geomagnetic disturbances and thermosphere–ionosphere coupling and the generation and dynamics of ionospheric irregularities, in the Brazilian sector. The locations of the three ionosondes stations are São José dos Campos (23.2°S, 45.9°W, dip latitude 17.6°S – under the southern crest of equatorial ionospheric anomaly), Palmas (10.2°S, 48.2°W, dip latitude 5.5°S – near the magnetic equator) and Manaus (2.9°S, 60.0°W, dip latitude 6.4°N – between the geographic and geomagnetic dip equators). It should be pointed out that Palmas and Manaus are located on the opposite sides of the magnetic equator but both are south of the geographic equator. The three CADIs work in time-synchronized mode and obtain ionograms every 5 min. This configuration of the ionospheric sounding stations allowed us to study the F-region dynamics during geomagnetically disturbed period in the meridional direction. Just after the installation and testing of the three CADIs, on September 05, 2002 a coronal mass ejection (CME) left the Sun and about 2 days after the CME left the Sun, it reached the Earth’s magnetosphere and complex and multi step events took place during the period September 07–09. In the study we note that the equatorial stations located north (Manaus, dip latitude 6.4°N) and south (Palmas, dip latitude 5.5°S) of the dip equator presented significant F-layer height asymmetries during the storm main phase. In addition, the low-latitude station SJC (dip latitude 17.6°S) presented decrease in the F-layer densities (negative phase), whereas Palmas presented increase in the F-layer densities (positive phase) during the main phase. This was followed by positive phase at both the stations. During the first night of the recovery phase a strong formation and evolution of large-scale ionospheric irregularities (equatorial spread-F (ESF)) was observed, but on the second night of the recovery phase, there was strong and almost simultaneous sporadic E (Es) formation at all three stations. During the presence of Es, spread-F formation is not observed, indicating the suppression of spread-F, possibly by sporadic E.
Keywords:Geomagnetic storms  Equatorial region  Low latitude
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号