首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
航空   2篇
航天技术   12篇
  2008年   4篇
  2002年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1985年   5篇
  1982年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
This instrument is designed to make measurements of the full three-dimensional distribution of suprathermal electrons and ions from solar wind plasma to low energy cosmic rays, with high sensitivity, wide dynamic range, good energy and angular resolution, and high time resolution. The primary scientific goals are to explore the suprathermal particle population between the solar wind and low energy cosmic rays, to study particle accleration and transport and wave-particle interactions, and to monitor particle input to and output from the Earth's magnetosphere.Three arrays, each consisting of a pair of double-ended semi-conductor telescopes each with two or three closely sandwiched passivated ion implanted silicon detectors, measure electrons and ions above 20 keV. One side of each telescope is covered with a thin foil which absorbs ions below 400 keV, while on the other side the incoming <400 keV electrons are swept away by a magnet so electrons and ions are cleanly separated. Higher energy electrons (up to 1 MeV) and ions (up to 11 MeV) are identified by the two double-ended telescopes which have a third detector. The telescopes provide energy resolution of E/E0.3 and angular resolution of 22.5°×36°, and full 4 steradian coverage in one spin (3 s).Top-hat symmetrical spherical section electrostatic analyzers with microchannel plate detectors are used to measure ions and electrons from 3 eV to 30 keV. All these analyzers have either 180° or 360° fields of view in a plane, E/E0.2, and angular resolution varying from 5.6° (near the ecliptic) to 22.5°. Full 4 steradian coverage can be obtained in one-half or one spin. A large and a small geometric factor analyzer measure ions over the wide flux range from quiet-time suprathermal levels to intense solar wind fluxes. Similarly two analyzers are used to cover the wide range of electron fluxes. Moments of the electron and ion distributions are computed on board.In addition, a Fast Particle Correlator combines electron data from the high sensitivity electron analyzer with plasma wave data from the WAVE experiment (Bougeretet al., in this volume) to study wave-particle interactions on fast time scales. The large geometric factor electron analyzer has electrostatic deflectors to steer the field of view and follow the magnetic field to enhance the correlation measurements.  相似文献   
2.
3.
Recent Cluster observations have strongly supported the existence of meso-scale structure in the magnetotail current sheet. In our study, a magnetohydrodynamic simulation event study exhibited current sheet behavior comparable to that seen in the Cluster observations. Geotail and DoubleStar observations also show that the simulation is providing a realistic representation of the magnetosphere during the period of interest; that is, when the current sheet evidently becomes bifurcated. The magnetohydrodynamic simulation allows us to place the local observations into a global contest. It shows that the observations can be explained in terms of localized reconnection tailward of the Cluster location and the formation of a flux rope nearby. The simulation also features wave-like structure across the current sheet.  相似文献   
4.
The plasma diagnostic experiments on the AUREOL-3 satellite have revealed flows of low energy 0+ ions deep inside the night plasmasphere during a large substorm. Flux gradients of the 0+ ions were accompanied by enhancements of ELF electric field noise. The appearance of suprathermal ions at L ? 2.5 – 3 is interpreted within the framework of electrostatic ion-cyclotron acceleration of ionospheric ions in the diffuse auroral zone /12/ followed by a radial displacement of these ions inside the plasmasphere driven by azimuthal electric fields during substorm activity. Electrostatic oscillations observed inside the plasmasphere are apparently associated with gradient instability at the sharp boundaries of suprathermal ion flows.  相似文献   
5.
We present a detailed study of the distribution and of the internal structure of the inverted-V electron precipitation commonly detected in the 500 – 2000 km altitude range aboard the AUREOL-3 satellite. These structured precipitations are statistically observed inside the auroral oval with a maximum occurence in the nightside sector. They correspond to primary electron fluxes peaked at energies generally below 10 keV. It is shown that, as predicted by kinetic theories, most inverted-V structures present a clear relationship between the field-aligned current density carried by the 1 – 20 keV primary electrons and the potential drop inferred from particle distribution functions. Furthermore the study demonstrates the existence of strong electron heating, related to the energy gain, when the current density exceeds some threshold of about 1 – 5 μA(m)?2.  相似文献   
6.
THE CLUSTER ION SPECTROMETRY (CIS) EXPERIMENT   总被引:5,自引:0,他引:5  
The Cluster Ion Spectrometry (CIS) experiment is a comprehensive ionic plasma spectrometry package on-board the four Cluster spacecraft capable of obtaining full three-dimensional ion distributions with good time resolution (one spacecraft spin) with mass per charge composition determination. The requirements to cover the scientific objectives cannot be met with a single instrument. The CIS package therefore consists of two different instruments, a Hot Ion Analyser (HIA) and a time-of-flight ion COmposition and DIstribution Function analyser (CODIF), plus a sophisticated dual-processor-based instrument-control and Data-Processing System (DPS), which permits extensive on-board data-processing. Both analysers use symmetric optics resulting in continuous, uniform, and well-characterised phase space coverage. CODIF measures the distributions of the major ions (H+, He+, He++, and O+) with energies from ~0 to 40 keV/e with medium (22.5°) angular resolution and two different sensitivities. HIA does not offer mass resolution but, also having two different sensitivities, increases the dynamic range, and has an angular resolution capability (5.6° × 5.6°) adequate for ion-beam and solar-wind measurements.  相似文献   
7.
Data from the particle experiment aboard the AUREOL-3 polar satellite show that about 30% of the summer cusp crossings are characterised by a clear latitudinal energy dispersion of the solar wind ions. This energy-latitude correlation is observed at very high latitudes, 80° – 85°, near the polar boundary of the cusp, as an increase of the ion average energy with latitude. These structures have a typical latitude extent of 1° – 2° at ionospheric heights and correspond to a northward-directed IMF. These observations are consistent with a sunward convection of the foot of the magnetic flux tubes recently merged with a northward directed interplanetary magnetic field.  相似文献   
8.
本文利用1994年和1996年两次返回式卫星的搭载条件对舱内辐射剂量进行了对比测量.通过对比测量,研究不同掺杂、不同厚度LiF剂量计测量空间辐射剂量的特点;研究GM计数管计数和LiF剂量间的转换系数以及转换系数随屏蔽状况的变化;由剂量和GM计数研究粒子平均碰撞阻止本领的估计方法.结果表明,不同掺杂、不同厚度的LiF剂量计测量结果间无显著差异,而转换系数几乎不受舱内位置和屏蔽状态的影响.不同厚度LiF剂量计,不同屏蔽状态的GM计数管计数和剂量—计数转换系数的比较研究以及对粒子平均碰撞阻止本领的估计表明,舱内辐射剂量起决定作用的是高能粒子成分,其平均碰撞阻止本领估计约为5MeV/cm.  相似文献   
9.
Double cusps have been observed on a few occasions by polar orbiting spacecraft and ground-based observatories. The four Cluster spacecraft observed two distinct regions, showing characteristics of a double cusp, during a mid-altitude cusp pass on 7 August 2004. The Wind spacecraft detected a southward turning of the Interplanetary Magnetic Field (IMF) at the beginning of the cusp crossings and IMF–Bz stayed negative throughout. Cluster 4 observed a high energy step in the ion precipitation around 1 keV on the equatorward side of the cusp and a dense ion population in the cusp centre. Cluster 1, entering the cusp around 1 min later, observed only a partial ion dispersion with a low energy cutoff reaching 100 eV, together with the dense ion population in the cusp centre. About 9 min later, Cluster 3 entered the cusp and observed full ion dispersion from a few keV down to around 50 eV, together with the dense ion population in the centre of the cusp. The ion flow was directed poleward and eastward in the step/dispersion, whereas in the centre of the cusp the flow was directed poleward and westward. In addition the altitude of the source region of ion injection in the step/dispersion was found 50% larger than in the cusp centre. This event could be explained by the onset of dayside reconnection when the IMF turned southward. The step would be the first signature of component reconnection near the subsolar point, and the injection in the centre of the cusp a result of anti-parallel reconnection in the northern dusk side of the cusp. A three-dimensional magnetohydrodynamic (MHD) simulation is used to display the topology of the magnetic field and locate the sources of the ions during the event.  相似文献   
10.
The CESR Toulouse - IKI Moscow particle instrument package aboard the AUREOL-3 satellite consists of a complete set of charged particle spectrometers which measure electron and ion fluxes from 15 eV to 25 keV in 128 steps and in 11 directions. In addition, 4 channel spectrometers (2 electron and 2 ion channels in parallel) allow high time resolution measurements (up to 10 msec) with onboard calculation of auto and cross correlation functions. For higher energies (40 – 280 keV), solid-state spectrometers are used to measure electron and proton fluxes in 4 channels in parallel. In addition, two Geiger counters are used for the determination of the trapping boundaries. Two mass-energy ion spectrometers (1 to 32 A.M.U., 0.02 – 15 keV) are placed with viewing angles which allow a distinction between nearly isotropic auroral proton precipitation and conical beams accelerated in the auroral ionosphere. Auroral and airglow photometry is performed aboard the AUREOL-3 satellite by a set of 3 parallel directed photometers with tiltable interference filters for 6300 Å, 4278 Å and Doppler shifte Hβ emissions. Various modes of energy, angular and mass scanning, correlation function calculation and various Soviet and French telemetry regimes provide the possibility of choosing the sequences of measurements according to particular experimental programs along the orbit. Finally, examples of data from inflight measurements using the above instruments are presented and briefly discussed, showing several interesting features.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号