首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A three-dimensional plasma and energetic particle investigation for the wind spacecraft
Authors:R P Lin  K A Anderson  S Ashford  C Carlson  D Curtis  R Ergun  D Larson  J McFadden  M McCarthy  G K Parks  H Rème  J M Bosqued  J Coutelier  F Cotin  C D'Uston  K -P Wenzel  T R Sanderson  J Henrion  J C Ronnet  G Paschmann
Institution:(1) Spaces Sciences Laboratory, University of California, 94720 Berkeley, CA, USA;(2) Geophysics Program, AK50, University of Washington, 98195 Seattle, WA, USA;(3) Centre d'Etude Spatiale des Rayonnements, Université Paul Sabatier, B.P. 4346, Toulouse, France;(4) Space Science Department of ESA, European Space Research and Technology Centre (ESTEC), 2200AG Noordwijk, The Netherlands;(5) Max Planck Institut für Extraterrestriche Physik, 85740 Garching bei München, Germany
Abstract:This instrument is designed to make measurements of the full three-dimensional distribution of suprathermal electrons and ions from solar wind plasma to low energy cosmic rays, with high sensitivity, wide dynamic range, good energy and angular resolution, and high time resolution. The primary scientific goals are to explore the suprathermal particle population between the solar wind and low energy cosmic rays, to study particle accleration and transport and wave-particle interactions, and to monitor particle input to and output from the Earth's magnetosphere.Three arrays, each consisting of a pair of double-ended semi-conductor telescopes each with two or three closely sandwiched passivated ion implanted silicon detectors, measure electrons and ions above sim20 keV. One side of each telescope is covered with a thin foil which absorbs ions below 400 keV, while on the other side the incoming <400 keV electrons are swept away by a magnet so electrons and ions are cleanly separated. Higher energy electrons (up to sim1 MeV) and ions (up to 11 MeV) are identified by the two double-ended telescopes which have a third detector. The telescopes provide energy resolution of DeltaE/Eap0.3 and angular resolution of 22.5°×36°, and full 4pgr steradian coverage in one spin (3 s).Top-hat symmetrical spherical section electrostatic analyzers with microchannel plate detectors are used to measure ions and electrons from sim3 eV to 30 keV. All these analyzers have either 180° or 360° fields of view in a plane, DeltaE/Eap0.2, and angular resolution varying from 5.6° (near the ecliptic) to 22.5°. Full 4pgr steradian coverage can be obtained in one-half or one spin. A large and a small geometric factor analyzer measure ions over the wide flux range from quiet-time suprathermal levels to intense solar wind fluxes. Similarly two analyzers are used to cover the wide range of electron fluxes. Moments of the electron and ion distributions are computed on board.In addition, a Fast Particle Correlator combines electron data from the high sensitivity electron analyzer with plasma wave data from the WAVE experiment (Bougeretet al., in this volume) to study wave-particle interactions on fast time scales. The large geometric factor electron analyzer has electrostatic deflectors to steer the field of view and follow the magnetic field to enhance the correlation measurements.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号