首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
航空   9篇
航天技术   1篇
  2011年   1篇
  2007年   1篇
  2005年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
In this paper we present a family of track-before-detect (TBD) procedures for early detection of moving targets from airborne radars. Upon a sectorization of the coverage area, the received echoes are jointly processed in the azimuth-range-Doppler domain and in the time domain through a Viterbi-like algorithm that exploits the physically admissible target transitions between successive illuminations, in order to collect all of the energy back-scattered during the time on target (TOT). A reduced-complexity implementation is derived assuming, at the design stage, that the target does not change resolution cell during the TOT in each scan. The constant false alarm rate (CFAR) constraint is also englobed in the proposed procedures as well as the possibility of working with quantized data. Simulation results show that the proposed algorithms have good detection and tracking capabilities even for high target velocities and low quantization rates.  相似文献   
2.
A new family of constant false alarm rate (CFAR) processors is introduced. An Ll-CFAR forms its noise power estimate by linearly filtering ranked samples from the reference set; the weights of this combination, however, depend not only on the rank, but also on the relative proximity of the sample to the cell under test. From the class of Ll-CFARs may be chosen members which effectively censor spurious targets; members which exhibit impressive control of false alarm in the presence of a clutter edge; and members which are robust against both such inhomogeneities. While the design of such schemes is involved, their implementation is not significantly more burdensome than that of plain ordered statistic CFAR (OS-CFAR). After a discussion of the stochastic training of Ll-CFAR, the performance is thoroughly assessed under the most commonly encountered instances of environmental conditions, and compared with those of classical CFAR techniques  相似文献   
3.
Radar detection of coherent pulse trains embedded in compound-Gaussian disturbance with partially known statistics is discussed. We first give a thorough derivation of two recently proposed adaptive detection structures. Next, we derive a different detection scheme exploiting the assumption that the clutter is wide-sense stationary. Resorting to the theory of circulant matrices, in fact, we demonstrate that the estimation of the structure of the clutter covariance matrix can be reduced to the estimation of its eigenvalues, which in turn can be (efficiently) done via fast Fourier transform codes. After a thorough performance assessment, mostly carried on via computer simulations, the results show that the newly proposed detector achieves better performance than the two previously introduced adaptive detectors. Moreover, a sensitivity analysis shows that, even though this detector does not strictly guarantee the constant false alarm rate property with respect to the clutter covariance matrix, it is robust, in the sense that its performance is only slightly affected by variations in the clutter temporal correlation  相似文献   
4.
In a decentralized detection scheme, several sensors perform a binary (hard) decision and send the resulting data to a fusion center for the final decision. If each local decision has a constant false alarm rate (CFAR), the final decision is ensured to be CFAR. We consider the case that each local decision is a threshold decision, and the threshold is proportional, through a suitable multiplier, to a linear combination of order statistics (OS) from a reference set (a generalization of the concept of OS thresholding). We address the following problem: given the fusion rule and the relevant system parameters, select each threshold multiplier and the coefficients of each linear combination so as to maximize the overall probability of detection for constrained probability of false alarm. By a Lagrangian maximization approach, we obtain a general solution to this problem and closed-form solutions for the AND and OR fusion logics. A performance assessment is carried on, showing a global superiority of the OR fusion rule in terms of detection probability (for operating conditions matching the design assumptions) and of robustness (when these do not match). We also investigate the effect of the hard quantization performed at the local sensors, by comparing the said performance to those achievable by the same fusion rule in the limiting case of no quantization  相似文献   
5.
Biparametric linear estimation for CFAR against Weibull clutter   总被引:1,自引:0,他引:1  
The authors deal with constant false alarm rate (CFAR) procedures against nonstationary clutter, modeled as a Weibull distributed process whose scale parameter α and shape parameter β are both variable. It is shown that conventional CFAR procedures, which compensate only for α, degrade intolerably as β deviates from β=2, namely, as the Rayleigh distributional assumption is violated. A biparametric CFAR procedure is shown to be suited to such situations. The authors introduce a logarithmic transformation to reduce the Weibull probability density function (pdf) to a Gumbel pdf, i.e., to the location-scale type, and then exploit the best linear unbiased estimation (BLUE) of location-scale parameters to adjust the detection threshold. True CFAR is thus achieved when the clutter is locally homogeneous. Resilience against local inhomogeneities can also be conferred since BLUE lends itself to censoring. Through a performance analysis, the influence of various system and distributional parameters is elicited  相似文献   
6.
Biparametric CFAR procedures for lognormal clutter   总被引:1,自引:0,他引:1  
The authors consider procedures for constant false alarm rate in lognormal clutter, accounting for variations of both the scale and a shape parameter of the clutter. Adaptivity to both parameters is obtained through biparametric estimation based on a sliding window surrounding the radar cell under test. Some procedures exploiting best linear unbiased estimation (BLUE) are presented and compared to a previous procedure called Log-t, which uses maximum likelihood estimation (MLE). The comparison is carried on for both a homogeneous clutter environment and for instances of inhomogeneous environment (clutter edges and spurious targets). In the latter instances, some advantages of BLUE procedures which stem from the opportunity of censoring are highlighted  相似文献   
7.
Design Principles of MIMO Radar Detectors   总被引:4,自引:0,他引:4  
This paper considers the problem of multiple-input multiple-output (MIMO) radars employing space-time coding (STC) to achieve diversity. To this end, after briefly outlining the model of the received echo, a suitable detection structure is derived, and its performance is expressed in closed form as a function of the clutter statistical properties and of the space-time code matrix. Interestingly, this receiver requires prior knowledge of the clutter covariance, but the detection threshold is functionally independent thereof. At the transmitter design stage, we give two criteria for code construction: the first is based on the classical Chernoff bound, the second is an information-theoretic criterion. Interestingly, the two criteria lead to the same condition for code optimality, which in turn specializes, under the assumption of uncorrelated clutter and square code matrix, in some well-known full-rate space-time codes. A thorough performance assessment is also given, so as to establish the optimum achievable performance for MIMO radar systems.  相似文献   
8.
The detection of incoherent pulse trains in compound-Gaussian disturbance with known spectral density is dealt with here. Two alternative approaches are investigated, The first, assuming perfect knowledge of the signal fluctuation law and implementing the Neyman-Pearson test on the observed waveform, turns out to be not applicable to the radar problem. The second, instead, relying on the generalized likelihood ratio optimization strategy, leads to a canonical detector, whose structure is independent of the clutter amplitude probability density function. Interestingly, this detector turns out to be constant false-alarm rate in the sense that threshold setting does not require any knowledge as to the clutter distribution, Moreover, since such a processor is not implementable in real situations, we also present an FFT-based (fast Fourier transform) suboptimum structure. Finally, we give closed-form formulas for the detection performance of both receivers, showing that both of them largely outperform the square-law detector, especially in the presence of very spiky clutter  相似文献   
9.
We built a new experimental apparatus (the “Satellite/lunar laser ranging Characterization Facility”, SCF) and created a new test procedure (the SCF-Test) to characterize and model the detailed thermal behavior and the optical performance of cube corner laser retroreflectors in space for industrial and scientific applications. The primary goal of these innovative tools is to provide critical design and diagnostic capabilities for Satellites Laser Ranging (SLR) to Galileo and other GNSS (Global Navigation Satellite System) constellations. The capability will allow us to optimize the design of GNSS laser retroreflector payloads to maximize ranging efficiency, to improve signal-to-noise conditions in daylight and to provide pre-launch validation of retroreflector performance under laboratory-simulated space conditions. Implementation of new retroreflector designs being studied will help to improve GNSS orbits, which will then increase the accuracy, stability, and distribution of the International Terrestrial Reference Frame (ITRF), to provide better definition of the geocenter (origin) and the scale (length unit).  相似文献   
10.
Asymptotically optimum radar detection in compound-Gaussian clutter   总被引:1,自引:0,他引:1  
An asymptotically optimum receiver designed for detecting coherent pulse trains in compound-Gaussian clutter is introduced and assessed. The proposed receiver assumes knowledge of the structure of the clutter covariance matrix, but does not require that of its amplitude probability density function (apdf). Performance is analytically evaluated, showing that the loss, as measured with respect to the corresponding optimum structure, is kept within a few dBs even for a relatively small number of integrated pulses and that it largely outperforms the matched-filter detector under all instances of practical interest. Interestingly, the proposed detector achieves constant false alarm rate (CFAR), regardless of the clutter envelope distribution and, consequently, its power  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号